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Abstract

Training Generative adversarial networks (GANs) stably

is a challenging task. The generator in GANs transform

noise vectors, typically Gaussian distributed, into realistic

data such as images. In this paper, we propose a novel ap-

proach for training GANs with images as inputs, but without

enforcing any pairwise constraints. The intuition is that

images are more structured than noise, which the generator

can leverage to learn a more robust transformation. The

process can be made efficient by identifying closely related

datasets, or a “friendly neighborhood” of the target distribu-

tion, inspiring the moniker, Spider GAN. To define friendly

neighborhoods leveraging proximity between datasets, we

propose a new measure called the signed inception distance

(SID), inspired by the polyharmonic kernel. We show that

the Spider GAN formulation results in faster convergence,

as the generator can discover correspondence even between

seemingly unrelated datasets, for instance, between Tiny-

ImageNet and CelebA faces. Further, we demonstrate cas-

cading Spider GAN, where the output distribution from a

pre-trained GAN generator is used as the input to the subse-

quent network. Effectively, transporting one distribution to

another in a cascaded fashion until the target is learnt – a

new flavor of transfer learning. We demonstrate the efficacy

of the Spider approach on DCGAN, conditional GAN, PG-

GAN, StyleGAN2 and StyleGAN3. The proposed approach

achieves state-of-the-art Fréchet inception distance (FID)

values, with one-fifth of the training iterations, in compari-

son to their baseline counterparts on high-resolution small

datasets such as MetFaces, Ukiyo-E Faces and AFHQ-Cats.

1. Introduction

Generative adversarial networks (GANs) [1] are designed

to model the underlying distribution of a target dataset (with
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underlying distribution pd) through a min-max optimiza-

tion between the generator G and the discriminator D net-

works. The generator transforms an input z ∼ pz , typically

Gaussian or uniform distributed, into a generated sample

G(z) ∼ pg . The discriminator is trained to classify samples

drawn from pg or pd as real or fake. The optimal generator

is the one that outputs images that confuse the discriminator.

Inputs to the GAN generator: The input distribution plays

a definitive role in the quality of GAN output. Low-

dimensional latent vectors have been shown to help dis-

entangle the representations and control features of the tar-

get being learnt [2, 3]. Prior work on optimizing the latent

distribution in GANs has been motivated by the need to

improve the quality of interpolated images. Several works

have considered replacing the Gaussian prior with Gaussian

mixtures, Gamma, non-parametric distributions, etc [4–9].

Alternatively, the GAN generator can be trained with the

latent-space distribution of the target dataset, as learnt by

variational autoencoders [10,11]. However, such approaches

are not in conformity with the low-dimensional manifold

structure of real data. Khayatkhoei et al. [12] attributed the

poor quality of the interpolates to the disjoint structure of

data distribution in high-dimensions, which motivates the

need for an informed choice of the input distribution.

GANs and image-to-image translation: GANs that accept

images as input fall under the umbrella of image translation.

Here, the task is to modify particular features of an im-

age, either within domain (style transfer) or across domains

(domain adaptation). Examples for in-domain translation

include changing aspects of face images, such as the ex-

pression, gender, accessories, etc. [13–15], or modifying the

illumination or seasonal characteristics of natural scenes [16].

On the other hand, domain adaptation tasks aim at transform-

ing the image from one style to another. Common applica-

tions include simulation to real-world translation [17–20], or

translating images across styles of artwork [21–23]. While

the supervised Pix2Pix framework [22] originally proposed

training GANs with pairs of images drawn from the source

and target domains, semi-supervised and unsupervised ex-
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(a) Classical GANs (b) Spider GAN

Figure 1. ( Color online) A comparison of design philosophies of the standard GANs and Spider GAN. (a) A prototypical GAN transforms

high-dimensional Gaussian data, which is concentrated at the surface of hyperspheres in n-D, into an image distribution comprising a

union of low-dimensional manifolds embedded in a higher-dimensional space. (b) The Spider GAN generator aims to learn a simpler

transformation between two closely related data manifolds in an unconstrained manner, thereby accelerating convergence.

tensions [23–28] tackle the problem in an unpaired setting,

and introduce modifications such as cycle-consistenty or the

addition of regularization functionals to the GAN loss to

maintain a measure of consistency between images. Exist-

ing domain-adaptation GANs [29, 30] enforce cross-domain

consistency to retain visual similarity. Ultimately, these ap-

proaches rely on enforcing some form of coupling between

the source and the target via feature-space mapping.

2. The Proposed Approach: Spider GAN

We propose the Spider GAN formulation motivated by

the low-dimensional disconnected manifold structure of

data [12, 31–33]. Spider GANs lie at the cross-roads be-

tween classical GANs and image-translation GANs. As

opposed to optimizing the latent parametric prior, we hy-

pothesize that providing the generator with closely related

image source datasets, (dubbed the friendly neighborhood,

leading to the moniker Spider GAN) will result in superior

convergence of the GAN. Unlike image translation tasks, the

Spider GAN generator is agnostic to individual input-image

features, and is allowed to discover implicit structure in the

mapping from the source distribution to the target. Figure 1

depicts the design philosophy of Spider GAN juxtaposed

with the classical GAN training approach.

The choice of the input dataset affects the generator’s abil-

ity to learn a stable and accurate mapping. Intuitively, if the

GAN has to be trained to learn the distribution of street view

house numbers (SVHN) [34], the MNIST [35] dataset proves

to be a better initialization of the input space than standard

densities such as the uniform or Gaussian. It is a well known

result that, for a given mean and variance, the Gaussian has

maximum entropy, while for a given support (say, [−1, 1]
when training with re-normalized images), the uniform distri-

bution has maximum entropy [36]. However, image datasets

are highly structured, and possess lower entropy [37]. There-

fore, one could interpret the generative modeling of images

using GANs as effectively one of entropy minimization [13].

We argue that choosing a low entropy input distribution that

is structurally closer to the target would lead to a more ef-

ficient generator transformation, thereby accelerating the

training process. Existing image-translation approaches aim

to maintain semantic information, for example, translating

a specific instance of the digit ‘2’ in the MNIST dataset to

the SVHN style. However, the Spider GAN formulation

neither enforces nor requires such constraints. Rather, it

allows for an implicit structure in the source dataset to be

used to learn the target efficiently. It is entirely possible for

the Trouser class in Fashion-MNIST [38] to map to the digit

‘1’ in MNIST due to structural similarity. Thus, the scope of

Spider GAN is much wider than image translation.

2.1. Our Contributions

In Section 3, we discuss the central focus in Spider GANs:

defining what constitutes a friendly neighborhood. Prelimi-

nary experiments suggest that, while the well known Fréchet

inception distance (FID) [39] and kernel inception distance

(KID) [40] are able to capture visual similarity, they are un-

able to quantify the diversity of samples in the underlying

manifold. We therefore propose a novel distance measure to

evaluate the input to GANs, one that is motivated by elec-

trostatic potential fields and charge neutralization between

the (positively charged) target data samples and (negatively

charged) generator samples [41,42], named signed inception

distance (SID) (Section 3.1). An implementation of SID

atop the Clean-FID [43] backbone is available at https:

//github.com/DarthSid95/clean-sid. We iden-

tify friendly neighborhoods for multiple classes of standard

image datasets such as MNIST, Fashion MNIST, SVHN,

CIFAR-10 [44], Tiny-ImageNet [45], LSUN-Churches [46],

CelebA [47], and Ukiyo-E Faces [48]. We present exper-

imental validation on training the Spider variant of DC-

GAN [49] (Section 4) and show that it results in up to

30% improvement in terms of FID, KID and cumulative

SID of the converged models. The Spider framework is

https://github.com/DarthSid95/clean-sid
https://github.com/DarthSid95/clean-sid


lightweight and can be extended to any GAN architec-

ture, which we demonstrate via class-conditional learning

with the Spider variant of auxiliary classifier GANs (AC-

GANs) [50] (Section 4). The source code for Spider GANs

built atop the DCGAN architecture are available at https:

//github.com/DarthSid95/SpiderDCGAN. We

also present a novel approach to transfer learning using Spi-

der GANs by feeding the output distribution of a pre-trained

generator to the input of the subsequent stage (Section 5).

Considering progressively growing GAN (PGGAN) [51]

and StyleGAN [52–54] architectures, we show that the cor-

responding Spider variants achieve competitive FID scores

in one-fifth of the training iterations on FFHQ [14] and

AFHQ-Cats [30], while achieving state-of-the-art FID on

high-resolution small-sized datasets such as Ukiyo-E Faces

and MetFaces [53] (Section 5.1). The source code for

implementing Spider StyleGANs is available at https:

//github.com/DarthSid95/SpiderStyleGAN.

2.2. Related Works

The choice of the input distribution in GANs determines

the quality of images generated by feeding the generator

interpolated points, which in turn is determined by the

probability of the interpolated points lying on the manifold.

High-dimensional Gaussian random vectors are concentrated

on the surface of a hypersphere (Gaussian annulus theo-

rem [55]), akin to a soap bubble, resulting in interpolated

points that are less likely to lie on the manifold. Alternatives

such as the Gamma [6] or Cauchy [7] prior result in superior

performance over interpolated points, while Singh et al. [9]

derive a non-parametric prior that minimized the divergence

between the input and the midpoint distributions.

A well known result in high-dimensional data analysis is

that structured datasets are embedded in a low-dimensional

manifold with an intrinsic dimensionality (nD) significantly

lower than the ambient dimensionality n [37]. For instance,

in MNIST, n = 784, while nD ≈ 12 [56]. Feng et al.[57]

showed that the mismatch between nD of the generator input

and its output adversely affects performance. Although in

practice, estimating nD may not always be possible [12, 56,

58], these results justify picking input distributions that are

structurally similar to the target. In instance-conditioned

GANs [59], the target data is modeled as clusters on the data

manifold to improve learning.

The philosophy of cascading Spider GAN generators runs

in parallel to input optimization in transfer learning with

GANs, such as Mine GAN [60] where mining networks

are implemented that transform the input distribution of the

GAN nonlinearly to learn the target samples better. Kerras

et al. [53] showed that transfer learning improves the perfor-

mance of GANs on small datasets, and observed empirically

that transferring weights from models trained on visually

diverse data lead to better performance of the target model.

3. Where is the Friendly Neighborhood?

We now consider various distance measures between

datasets that can be used to identify the friendly neighbor-

hood/source dataset in Spider GANs. While the most di-

rect approach is to compare the intrinsic dimensions of the

manifolds, such approaches are either computationally in-

tensive [61], or do not scale with sample size [56, 58]. We

observed that the friendly neighbors detected by such ap-

proach did not correlate well experimentally, and therefore,

defer discussions on such methods to Appendix A.

Based on the approach advocated by Wang et al. [62]

to identify pre-trained GAN networks for transfer learning,

we initially considered FID and KID to identify friendly

neighbors. We use the FID to measure the distance between

the source (generator input) and the target data distributions.

A source that has a lower FID is closer to the target and

will serve as a better input to the generator. The first four

columns of Table 1 present FID scores between the standard

datasets we consider in this paper. The first, second and

third friendly neighbors (color coded) of a target dataset

are the source datasets with the lowest three FIDs. As ob-

served from Table 1, a limitation is that the FID of a dataset

with itself is not always zero, which is counterintuitive for

a distance measure. In cases such as CIFAR-10 or Tiny-

ImageNet, this is indicative of the variability in the dataset,

and in Ukiyo-E Faces, this is due to limited availability of

data samples, which has been shown to negatively affect FID

estimation [40, 63]. FID satisfies reciprocity, i.e., it iden-

tifies datasets as being mutually close to each other, such

as CIFAR-10 and Tiny-ImageNet. However, preliminary

experiments on training Spider GAN using FID to identify

friendly neighbors showed that the relative diversity between

datasets is not captured. Given a source, learning a less

diverse target distribution is easier (cf. Section 4 and Ap-

pendix D.2). These issues are similar to the observations

made by Kerras et al. [53] in the context of weight transfer.

This can be understood via an example — fitting a multi-

modal target Gaussian having 10 modes would be easier with

a 20-component source distribution than a 5-component one.

3.1. The Signed Inception Distance (SID)

Given the limitations of FID discussed above, we pro-

pose a novel signed distance for measuring the proximity

between two distributions. The distance is “signed” in the

sense that it can also take negative values. Further, it is

not symmetric. The distance is also practical to compute

because it is expressed in terms of the samples drawn from

the distributions. The proposed distance draws inspiration

from the improved precision-recall scores of GANs [64]

and the potential-field interpretation in Coulomb GANs [41]

and Poly-LSGAN [42]. Consider batches of samples drawn

from distributions µp and µq, given by Dp = {c̃i}
Np

i=1
and

https://github.com/DarthSid95/SpiderDCGAN
https://github.com/DarthSid95/SpiderDCGAN
https://github.com/DarthSid95/SpiderStyleGAN
https://github.com/DarthSid95/SpiderStyleGAN


Table 1. A comparison of FID and CSIDm between popular training datasets for m = ⌊n

2
⌋. The rows represent the source and the columns

correspond to the target. The first, second and third friendly neighbors of the target are the sources with the three lowest FID, or lowest

positive CSID values, respectively. CSID is superior to FID, as it assigns negative values to sources that are less diverse than the target.

MNIST and Fashion-MNIST are shown in gray to denote scenarios where grayscale images are not valid sources for the color-image targets.

Source

Target FID (Source , Target) CSIDm(Source ‖Target)

MNIST CIFAR-10 TinyImageNet Ukiyo-E MNIST CIFAR-10 TinyImageNet Ukiyo-E

MNIST 1.2491 258.246 264.250 398.280 0.1863 29.298 9.436 201.550

F-MNIST 176.813 188.367 197.057 387.049 162.962 19.051 -2.5571 191.010

SVHN 236.707 168.615 189.133 372.444 212.473 34.534 21.668 214.507

CIFAR-10 259.045 5.0724 64.3941 303.694 221.337 -0.1487 -7.109 198.991

TinyImageNet 264.309 64.0312 6.4854 257.078 230.916 12.892 0.6743 197.447

CelebA 360.773 303.490 250.735 301.108 204.794 23.685 8.829 184.170

Ukiyo-E 396.791 300.511 254.102 5.9137 250.226 39.793 18.727 0.5494

Church 350.708 294.982 254.991 267.638 212.452 -4.655 -23.115 198.750

Dq = {cj}
Nq

j=1
, respectively. Given a test vector x ∈ R

n,

consider the Coulomb GAN discriminator [41]:

f(x) =
1

Np

Np
∑

i=1
c̃i∼µp

Φ(x, c̃i)−
1

Nq

Nq
∑

j=1
cj∼µq

Φ(x, cj), (1)

where Φ is the polyharmonic kernel [42, 65]:

Φ(x,y)=κm,n

{

‖x−y‖2m−n, if 2m−n<0

or n is odd,

‖x−y‖2m−n ln(‖x−y‖), if 2m−n≥0

and n is even,

,

and κm,n is a positive constant, given the order m and di-

mensionality n. The higher-order generalization gives us

more flexibility and numerical stability in computation. We

use m ≈ ⌊n
2
⌋ as a stable choice, while ablation studies on

choosing m are given in Appendix B.4

From the perspective of electrostatics, for µp = pg and

µq = pd, f(x) in Equation (1) treats the target data as nega-

tive charges, and generator samples as positive charges. The

quality of µp in approximating/matching µq is measurable

by computing the effect of the net charge present in any cho-

sen volume around the target µq on a test charge x. Consider

a hypercube Cq,r of side length r, centered around µq with

test charges {xℓ}
Mx

ℓ=1
, xℓ ∈ Cq,r. To analyze the average

behavior of target and generated samples in Cq,r, we draw

xℓ uniformly within Cq,r. We consider Np = Nq = N for

simplicity. We now define the signed distance of µp from µq

as the negative of f(x), summed over a uniform sampling

of points over Cq,r, i.e. SDm,r(µp‖µq) is given by:

1

NMx

Mx
∑

ℓ=1
x̃ℓ∈Cq,r

(

N
∑

j=1
cj∼µq

Φ(xℓ, cj)−

N
∑

i=1
c̃i∼µp

Φ(xℓ, c̃i)

)

. (2)

Similar to the improved precision and recall (IPR) met-

rics, SDm,r(µp‖µq) is asymmetrical, i.e., SDm,r(µp‖µq) 6=
SDm,r(µq‖µp). When SDm,r(µp‖µq) < 0, on the average,

samples from µq are relative more spread out than those

drawn from µp with respect to Cq,r, and vice versa. When

µp = µq , we have SDm,r(µp‖µq) ≈ 0. Illustrations of these

three scenarios are provided in Appendix B.3.

In practice, similar to the standard GAN metrics, the

computation of SD can be made practical and efficient on

higher-resolution images by evaluating the measure on the

feature-space of the images learnt by the pre-trained Incep-

tionV3 [66] network mapping ψ(c). This results in the

signed inception distance SIDm,r(µp‖µq) = given by:

1

NMx

Mx
∑

ℓ=1

xℓ∈C′

q,r

(

N
∑

j=1
cj∼µq

Φ (xℓ, ψ(cj))−

N
∑

i=1
c̃i∼µp

Φ(xℓ, ψ(c̃i))

)

, (3)

where C′
q,r denotes the hypercube of side r centered on the

transformed distribution ψ(µq). To begin with, we find

σq = max{diag(Σq)}, where in turn, Σq is the covariance

matrix of the samples in Dq. We define the hypercube C′
q,r

as having side r = σq along each dimension and centered

around the mean of µq. To compare two datasets, we plot

SIDm,r(µp‖µq) as a function of r ∈ [σq, 100σq] varying r

in steps of 0.5. SID comparison figures for a few representa-

tive target datasets are given in Figure 2. We observe that,

when two datasets are closely related, SID is close to zero

even for small r. Datasets with lower diversity than the target

have a negative SID, and vice versa. In order to quantify

SID as a single number (akin to FID and KID) we consider

SID, accumulated over all radii r (the cumulative SID or

CSID, for short) given by: CSIDm =
∑

r SIDm,r. The last

four columns of Table 1 presents CSID for m = ⌊n
2
⌋ for the

various datasets considered. We observe that CSID is highly

correlated with FID when the source is more diverse than the

target, while it is able to single out sources that lack diversity,

which FID cannot. These results quantitatively verify the

empirical closeness observed when transfer-learning across

datasets [53]. Additional experiments and ablation studies

on SID are given in Appendices A and B.
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Figure 2. ( Color online) SIDm,r as a function of the hyper-cube length r. We observe that Fashion-MNIST is the closest to MNIST, while

Tiny-ImageNet and SVHN are closest to CIFAR-10. Fashion-MNIST and CelebA are friendly neighbors of Tiny-ImageNet.

Picking the Friendliest Neighbor: While the various ap-

proaches to compare datasets generally suggest different

friendly neighbors, we observe that the overall trend is con-

sistent across the measures. For example, Tiny-ImageNet

and CelebA are consistently friendly neighbors to multiple

datasets. We show in Sections 4 and 5 that choosing these

datasets as the input indeed improves the GAN training al-

gorithm. Both the proposed SID, and baseline FID/KID

measures are relative in that they can only measure close-

ness between provided candidate datasets. Incorporating

domain-awareness aids in the selection of appropriate input

datasets between which SID can be compared. For example,

all metrics identify Fashion-MNIST as a friendly neighbor

when compared against color-image targets, although, as ex-

pected, the performance is sub-par in practice (cf. Section 4).

One would therefore discard MNSIT and Fashion-MNIST

when identifying friendly neighbors of color-image datasets.

Although SID is superior to FID and KID in identifying less

diverse source datasets, no single approach can always find

the best dataset yet in all real-world scenarios. A pragmatic

strategy is to compute various similarity measures between

the target and visually/structurally similar datasets, and iden-

tify the closest one by voting.

4. Experimental Validation

To demonstrate the Spider GAN philosophy, we train Spi-

der DCGAN on MNIST, CIFAR-10, and 256×256 Ukiyo-E

Faces datasets using the input datasets mentioned in Sec-

tion 3. While encoder-decoder architectures akin to image-

to-image translation GANs could also be employed, their

performance does not scale with image dimensionality. De-

tailed ablation experiments are provided in Appendix D.1.

The second aspect is the limited stochasticity of the input

dataset, when its cardinality is lower than that of the tar-

get. In these scenarios, the generator would attempt to learn

one-to-many mappings between images, thereby not mod-

eling the target entirely. For Spider DCGAN variants, the

source data is resized to 16× 16, vectorized, and provided

as input. Based on preliminary experimentation (cf. Ap-

pendix D.2.1), to improve the input dataset diversity, we

consider a Gaussian mixture centered around the samples

of the source dataset formed by adding zero-mean Gaussian

noise with variance σ ≈ 0.25 to each source image. An

alternative solution, based on pre-trained generators is pre-

sented in Section 5. We consider the Wasserstein GAN [67]

loss with a one-sided gradient penalty [68]. The training

parameters are described in Appendix C. In addition to FID

and KID, we compare the GAN variants in terms of the

cumulative SID (CSIDm) for m = ⌊n
2
⌋ to demonstrate the

viability of evaluating GANs with the proposed SID metric.

Results: We demonstrate the ability of Spider GAN to

leverage the structure present in the source dataset. From

the input-output pairs given in Figure 3, we observe that,

although trained in an unconstrained manner, the gener-

ator learns structurally motivated mappings. In the case

when learning MNIST images with Fashion-MNIST as in-

put, the generator has learnt to cluster similar classes, such

as Trousers and the 1 class, or the Shoes class and digit

2, which serendipitously are also visually similar. Even in

scenarios where such pairwise similarity is not present, as

in the case of generating Ukiyo-E Faces from CelebA or

CIFAR-10, Spider GAN leverages implicit/latent structure

to accelerate the generator convergence. Figure 4 presents

FID as a function of iterations for each learning task for a

few select target datasets. Spider GAN variants with friendly

neighborhood inputs outperform the baseline models with

parametric noise inputs, while also converging faster (up to

an order in the case of MNIST). Table 2 presents the FID

of the best-case models. In choosing a friendly neighbor,

a poorly related dataset results in worse performance than

the baselines, while a closely related input results in FID im-

provements of about 30%. The poor performance of Fashion

MNIST as a friendly neighbor to CIFAR-10 and Ukiyo-E

faces datasets corroborate the observations made in Section 3.

We observe that CSIDm is generally in agreement with the

performance indicated by FID/KID, making it a viable al-

ternative in evaluating GANs. Experiments on remaining

source-target combinations are provided in Appendix D.2.
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Figure 3. ( Color online) Figures depicting the implicit structure learnt by Spider GAN when transforming the source to the target. The

network learns both visual, and implicit correspondences across datasets. For example, the Trouser class in Fashion-MNIST maps to the digit

1 in MNIST, while the implicit structure is leveraged by the generator in transforming either CIFAR-10 or CelebA to Ukiyo-E Faces. A poor

choice of the input distribution, for instance selecting Fashion-MNIST as the friendly neighbor of CIFAR-10, results in suboptimal learning.
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Figure 4. ( Color online) FID versus iterations for training baseline and Spider GAN with the first, second and third friendly neighbors

(color coded) identified by CSID (cf. Table 1). Using the friendliest neighbor results in the best (lowest) FID scores.On MNIST, Spider

GAN variants saturate to a lower FID in an order of iterations faster than the baselines.

Table 2. Comparison of FID, KID and the proposed CSIDm (with m = ⌊n

2
⌋) for the Spider DCGAN and baseline variants on MNIST,

CIFAR-10, and Ukiyo-E Faces datasets. The first (†), second (‡) and third (⋆) friendly neighbors (cf. CSID; Table 1) of the target are marked

for cross-referencing against the first, second and third best FID/KID/CSIDm scores. Spider DCGAN, with friendly neighborhood input

datasets outperform the baseline parametric and non-parametric priors, while a bad choice for the input results in a poorer performance.

Input Distribution
MNIST CIFAR10 Ukiyo-E Faces

FID KID CSIDm FID KID CSIDm FID KID CSIDm

B
as

el
in

es

Gaussian [49] (R100) 21.49 0.0139 21.31 71.84 0.0619 19.90 62.26 0.0535 23.10

Gamma [6] (R100) 21.15 0.0133 19.44 72.66 0.0483 19.87 70.02 0.0495 30.59

Non-Parametric [9] (R100) 20.94 0.0137 20.78 74.90 0.0530 19.45 65.36 0.0421 25.40

Gaussian (RH×W×C) 42.44 0.0354 32.20 73.00 0.0504 21.99 70.96 0.0501 35.30

S
p

id
er

D
C

G
A

N

MNIST – – – 71.70 0.0535 21.83 68.87 0.0438 33.13

Fashion MNIST † 16.80 † 0.0103 † 12.44 77.86 0.0550 28.85 72.431 0.0455 36.21

SVHN 27.17 0.0205 17.23 ⋆ 64.30 ⋆ 0.0451 ⋆18.44 70.13 0.0482 25.06

CIFAR-10 29.22 0.0220 24.96 – – – 70.55 0.0530 24.12

TinyImageNet 32.66 0.0244 36.90 † 58.82 † 0.0305 † 14.02 ‡ 61.91 ‡ 0.0463 ‡ 21.07

CelebA ‡ 20.55 ‡ 0.0144 ‡ 15.74 ‡ 60.09 ‡ 0.0434 ‡ 17.68 † 54.09 † 0.0408 † 20.12

Ukiyo-E 18.72 0.0122 19.35 67.80 0.0463 19.90 – – –

LSUN-Churches ⋆ 30.67 ⋆ 0.0228 ⋆ 30.61 61.46 0.0365 19.82 ⋆ 66.26 ⋆ 0.0496 ⋆ 25.21



Extension to Class-conditional Learning: As a proof of

concept, we developed the Spider counterpart to the auxil-

iary classifier GAN (ACGAN) [50], entitled Spider ACGAN.

Here, the discriminator predicts the class label of the in-

put in addition to the real versus fake classification. We

consider two variants of the generator, one without class

information, and the other with the class label provided as

a fully-connected embedding to the input layer. While Spi-

der ACGAN without generator embeddings is superior to

the baseline Spider GAN in learning class-level consistency,

mixing between the classes is not eliminated entirely. How-

ever, with the inclusion of class embeddings in the generator,

the disentanglement of classes can be achieved in Spider

ACGAN. Additional details are provided in Appendix D.3.

Extensions of Spider GAN to larger class-conditional GAN

models such as BigGAN [69], and scenarios involving mis-

match between the number of classes in the input and output

datasets, are promising directions for future research.

5. Cascading Spider GANs

The DCGAN architecture employed in Section 4 does

not scale well for generating high-resolution images. While

training with image datasets has proven to improve the gen-

erated image quality, the improvement is accompanied by

an additional memory requirement. While inference with

standard GANs requires inputs drawn purely from random

number generators, Spider DCGAN would require storing

an additional dataset as input. To overcome this limitation,

we propose a novel cascading approach, where the output

distribution of a publicly available pre-trained generator is

used as the input distribution to subsequent Spider GAN

stages. The benefits are four-fold: First, the memory re-

quirement is significantly lower (by an order or two), as

only the weights of an input-stage generator network are

required to be stored. Second, the issue of limited stochastic-

ity in the input distribution is overcome, as infinitely many

unique input samples can be drawn. Third, the network can

be cascaded across architectures and styles, i.e., one could

employ a BigGAN input stage (trained on CIFAR-10, for

example) to train a Spider StyleGAN network on ImageNet,

or vice versa. Essentially, no pre-trained GAN gets left be-

hind. Lastly, the cascaded Spider GANs can be coupled with

existing transfer learning approaches to further improve the

generator performance on small datasets [53].

5.1. Spider Variants of PGGAN and StyleGAN

We consider training the Spider variants of Style-

GAN2 [52] and progressively growing GAN (PGGAN) [51]

on small datasets, specifically the 1024-MetFaces and 1024-

Ukiyo-E Faces datasets, and high-resolution FFHQ. We con-

sider input from pre-trained GAN generators trained on the

following two distributions (a) Tiny-ImageNet, based on

CSIDm, that suggest that it is a friendly neighbor to the

targets; and (b) AFHQ-Dogs, which possesses structural

similarity to the face datasets. The experimental setup is

provided in Appendix D.4, while evaluation metrics are de-

scribed in Appendix C.2. To maintain consistency with the

reported scores for state-of-the-art baselines models, we re-

port only FID/KID here, and defer comparisons on CSIDm

to Appendix D.5. To isolate and assess the performance im-

provements introduced by the Spider GAN framework, we

do not incorporate any augmentation or weight transfer [53].

Table 3 shows the FID values obtained by the baselines and

their Spider variants. Spider PGGAN performs on par with

the baseline StyleGAN2 in terms of FID. Spider StyleGAN2

achieves state-of-the-art FID on both Ukiyo-E and MetFaces.

To incorporate transfer learning techniques, we consider

(a) learning FFHQ considering StyleGAN with adaptive

discriminator augmentation (ADA) [53]; and (b) learning

AFHQ-Cats considering both ADA and weight transfer [53].

Spider StyleGAN2-ADA achieves FID scores on par with

the state of the art, outperforming improved sampling tech-

niques such as Polarity-StyleGAN2 [71] and MaGNET-

StyleGAN2 [72]. While StyleGAN-XL achieves marginally

superior FID, it does so at the cost of a three-fold increase

in network complexity [70]. The FID and KID scores, and

training configurations are described in Tables 4-5. Spider

StyleGAN2-ADA and Spider StyleGAN3 achieve competi-

tive FID scores with a mere one-fifth of the training iterations.

The Spider StyleGAN3 model with weight transfer achieves

a state-of-the-art FID of 3.07 on AFHQ-Cats, in a fourth of

the training iterations as StyleGAN3 with weight transfer.

Additional results are provided in Appendix D.5.

5.2. Understanding the Spider GAN Generator

The idea of learning an optimal transformation between

a pair of distributions has been explored in the context

of optimal transport in Schrödinger bridge diffusion mod-

els [73–76]. The closer the two distributions are, the easier it

is to learn a transport map between them. Spider GANs lever-

age underlying similarity, not necessarily visual, between

datasets to improve generator learning. Similar discrepancies

between visual features and those learnt by networks have

been observed in ImageNet [77] object classification [78].

To shed more light on this intuition, consider a scenario

where both the input and target datasets in Spider DCGAN

are the same, with or without random noise perturbation. As

expected, the generator learns an identity mapping, repro-

ducing the input image at the output (cf. Appendix D.2.5).

Input Dataset Bias: Owing to the unpaired nature of train-

ing, Spider GANs do not enforce image-level structure to

learn pairwise transformations. Therefore, the diversity of

the source dataset (such as racial or gender diversity) does

not affect the diversity in the learnt distribution. Experiments

on Spider DCGAN with varying levels of class-imbalance

in the input dataset validate this claim (cf. Appendix D.2.3).



Table 3. A comparison of the FID and KID values achieved by the PGGAN

and StyleGAN2 baselines and their Spider variants, when trained on small

datasets. A ⋆ indicates scores computed on publicly available pre-trained

models using the Clean-FID library [43]. Spider StyleGAN2 achieves state-

of-the-art FID and KID scores, while Spider PGGAN achieves performance

comparable with the baseline StyleGAN methods.

Architecture Input
Ukiyo-E Faces MetFaces

FID KID FID KID

PGGAN [51] Gaussian 69.03 0.0762 85.74 0.0123

Spider PGGAN Ours) TinyImageNet 57.63 0.0161 45.32 0.0063

StyleGAN2⋆ [52] Gaussian 56.74 0.0159 65.74 0.0350

StyleGAN2-ADA⋆ [53] Gaussian 26.74 0.0109 18.75 0.0023

Spider StyleGAN2 (Ours) TinyImageNet 20.44 0.0059 15.60 0.0026

Spider StyleGAN2 (Ours) AFHQ-Dogs 32.59 0.0269 29.82 0.0019

Table 4. A comparison of StyleGAN2-ADA and Style-

GAN3 variants in terms of FID, on learning FFHQ. A †
indicates a reported score. Spider StyleGAN2-ADA per-

forms on par with the state-of-the-art StyleGAN-XL (three

fold higher network complexity) [70], and outperforms

variants with customized sampling techniques [71, 72].

Architecture Input FID

StyleGAN-XL [70] Gaussian 2.02†

Polarity-StyleGAN2 [71] Gaussian 2.57†

MaGNET-StyleGAN2 [72] Gaussian 2.66†

StyleGAN2-ADA [53] Gaussian 2.70†

Spider StyleGAN2-ADA (Ours) TinyImageNet 2.45

Spider StyleGAN2-ADA (Ours) AFHQ-Dogs 3.07

StyleGAN3-T [54] Gaussian 2.79†

Spider StyleGAN3-T (Ours) TinyImageNet 2.86

Table 5. A comparison of the FID and KID values achieved by the StyleGAN baselines and their Spider variants, when trained on the the

AFHQ-Cats dataset, considering various training configurations. A ⋆ indicates a score reported in the Clean-FID library [43]. † Karras

et al. only report FID on the combined AFHQv2 dataset consisting of images from the Dogs, Cats, and Wild-Animals classes. Spider

StyleGAN2-ADA and Spider StyleGAN3 achieve FID and KID scores competitive with the baselines in a mere one-fifth of the training

iterations, while Spider StyleGAN3 with weight transfer achieves state-of-the-art FID on AFHQ in one-fourth of the training iterations.

Architecture Weight Transfer Input Distribution Training steps FID KID (×10−3)

StyleGAN2-ADA [53] – Gaussian 25000 5.13⋆ 1.54⋆

StyleGAN3-T [54] – Gaussian 25000 4.04† –
Spider StyleGAN3-T (Ours) – AFHQ-Dogs 5000 6.29 1.64

StyleGAN2-ADA [53] FFHQ Gaussian 5000 3.55 0.35
Spider StyleGAN2-ADA (Ours) FFHQ Tiny-ImageNet 1000 3.91 1.23

StyleGAN2-ADA [53] AFHQ-Dogs Gaussian 5000 3.47⋆ 0.37⋆

Spider StyleGAN2-ADA (Ours) AFHQ-Dogs Tiny-ImageNet 1500 3.07 0.29
Spider StyleGAN3-T (Ours) AFHQ-Dogs Tiny-ImageNet 1000 3.86 1.01

Input-space Interpolation: Lastly, to understand the repre-

sentations learnt by Spider GANs, we consider input-space

interpolation. Unlike classical GANs, where the input noise

vectors are the only source of control, in cascaded Spider

GANs, interpolation can be carried out at two levels. Inter-

polating linearly between the noise inputs to the pre-trained

GAN result in a set of interpolations of the intermediate

image. Transforming these images through the Spider Style-

GAN generator results in greater diversity in the output

images, with sharper transitions between images. This is

expected as interpolating on the Gaussian manifold is known

to result in discontinuities in the generated images [6, 7].

Alternatively, for fine-grained tuning, linear interpolations

of the intermediate input images can be carried out, resulting

in smoother transitions in the output images. Images demon-

strating this behavior are provided in Appendix D.5.1. Quali-

tative experiments on input-space interpolation in Spider DC-

GAN and additional images are provided in Appendix D.2.2.

These results indicate that stacking multiple Spider GAN

stages yields varying levels of fineness in controlling features

in the generated images.

6. Conclusions

We introduced the Spider GAN formulation, where we

provide the GAN generator with an input dataset of samples

from a closely related neighborhood of the target. Unlike

image-translation GANs, there are no pairwise or cycle-

consistency requirements in Spider GAN, and the trained

generator learns a transformation from the underlying latent

data distribution to the target data. While the best input

dataset is a problem-specific design choice, we proposed

approaches to identify promising friendly neighbors. We

proposed a novel signed inception distance, which measures

the relative diversity between two datasets. Experimental

validation showed that Spider GANs, trained with closely

related datasets, outperform baseline GANs with parametric

input distributions, achieving state-of-the-art FID on Ukiyo-

E Faces, MetFaces, FFHQ and AFHQ-Cats.

While we focused on adaptive augmentation and weight

transfer, incorporating other transfer learning approaches [29,

60, 79] is a promising direction for future research. One

could also explore extensions to vector quantized GANs [80,

81] or high-resolution class-conditional GANs [69, 82].
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Overview of the Supplementary Material

The Supplementary Material comprises this Supporting Document of appendices, the source codes of this project, consisting

of the implementations of various Spider GAN variants and SID metric, and animations corresponding to (a) Evaluating

the signed distance on Gaussain data; and (ii) Interpolation in the input, and intermediate stages of Spider StyleGAN. The

appendices contains the additional discussions on identifying the friendly neighborhood in Spider GANs, ablation studies on

SID, implementation details, and additional experiments on the Spider GAN variants considered in the Main Manuscript. The

citations to prior art in the Supporting Document are with respect to the references listed herein.

A. Baselines for Identifying the Friendly Neighborhood

Approaches that compute the intrinsic dimensionality nD of a dataset are either computationally intensive [1] or do not

scale with sample size [2, 3]. Campadelli et al. [4] presented a survey of various nearest-neighbor and maximum-likelihood

estimators of nD for low-dimensional datasets. A well-known approach for computing nD is provided in the Davis-Kahan

sinΘ theorem [5], which provides an upper bound on the distance between two subspaces in terms of the eigen-gap between

them. A practically implementable version [6] is based on the sample covariance matrix of the two datasets and their

eigenvalues. Along a parallel vertical, multiple works have derived convergence guarantees on the GAN training algorithms,

given nD [7, 8, 9]. We now discuss the Davis-Kahan sinΘ theorem, and compare its performance against the FID, KID and

CSIDm approaches in terms of the friendliest neighbors picked by them.

A.1. The DavisKahan Theorem

The Davis-Kahan sinΘ Theorem [5] upper-bounds the distance between subspaces in terms of the eigen-gap between

them. Let Σp,Σq ∈ R
n×n denote the sample covariance matrices of two datasets Dp and Dq, respectively, with λ1p ≥

λ2p ≥ · · · ≥ λnp
and λ1q ≥ λ2q ≥ · · · ≥ λnq

denoting their respective eigenvalues in order. Consider 1 ≤ r ≤ s ≤ n,

and define d := s − r + 1, λ0 := ∞ and λn+1 := −∞. Consider the subspaces Vp = span
{

vp
r
, vp

r+1, . . . , v
p

s

}

and

Vq = span
{

vq
r
, vq

r+1, . . . , v
q

s

}

that are spanned by the eigenvectors of Σp and Σq, respectively. The Davis-Kahan sinΘ
theorem bounds the distance between the two subspaces Vp and Vq as follows:

‖ sinΘ(Vp,Vq)‖F ≤
‖Σp − Σq‖F

δ
, (1)

where δ = inf
{

|λ̂− λ| : λ ∈ [λq

s
, λq

r
] , λ̂ ∈

(

−∞, λ̂p

s−1

]

⋃

[

λ̂p

r+1,∞
)}

.

As noted by Yu et al. [6], evaluating the infimum among all pairs of eigenvalues requires a huge computational overhead,

particularly on high-dimensional data. They derived a loose, but computationally efficient upper bound:

‖sinΘ(Vp,Vq)) ‖F ≤
2min

{

d
1

2 ‖Σp − Σq‖op, ‖Σp − Σq‖F

}

min
{

λq

r−1 − λq

r, λ
q

s − λq

s+1

} , (2)

where ‖ · ‖op and ‖ · ‖F denote the operator and Frobenius norms, respectively. For large n, the operator norm can be

approximated by the ℓ∞ norm of the difference between the eigenvalues of Σp and Σq [6]. The form of the sinΘ distance in

Equation (2) replaces the infimum amongst all pairs with the minimum between only two pairs of eigenvalues, which requires

less computation.

We now discuss a variant of the sinΘ distance between the subspaces spanned by two datasets. Since the intrinsic

dimensionality of the data is not known priori, we compute the sinΘ distance for various choices of r and s, and pick the best

amongst them, which we call the min sinΘ distance.

The min sinΘ Distance: Consider the space spanned by the (vectorized) images in the datasets. Since the pixel resolution of

the images across datasets is not the same, it is appropriate to first rescale them to the same dimension, for instance, using

bilinear interpolation. Depending on whether the rescaled image dimension is greater or smaller than the image dimension,

there is a trade-off between the image quality (superior at higher resolution) and computational efficiency (superior at lower

resolution). We found out experimentally that resizing all images to 32× 32× 3 is a viable compromise. We consider r = 1
and compute the sinΘ(Vp,Vq; s), for s = 3, 4, . . . ⌈n/10⌉, where n = 3072 = 32× 32× 3. The friendly neighborhood as

indicated by the min sinΘ distance is mins{sinΘ(Vp,Vq; s)}. In other words, the closest source dataset given all s is deemed

the friendliest neighbor of the target.
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A.2. Comparison of Approaches for Identifying the Friendly Neighborhood

We compare the min sinΘ, FID, KID and CSIDm distances in terms of the friendliest neighbor predicted by these methods.

FID, KID and CSIDm distances have been defined in Section 3 of the Main Manuscript. Table 1 shows the min sinΘ distance

for the various datasets considered in Section 3 of the Main Manuscript. We also present KID between the various datasets

in Table 3 of this document. Tables 2 and 4 present the remaining combinations between datasets left out from the Main

Manuscript. The first, second and third friendly neighbors are color-coded for quick and easy identification. We observe

across all datasets that, FID and KID are highly correlated in terms of the friendly neighbors they identify for a given target.

CSIDm is also in agreement with the observations when the target is more diverse, but in scenarios such as TinyImageNet or

CIFAR-10, it is able to indicate the less diverse sources as a poor input choice. The experiments on learning Tiny-ImageNet

within the Spider GAN framework in Appendix D.2 are more in agreement with the friendly neighbors identified by CSIDm.

Across all distances, we observe that the results obtained on MNIST or Fashion-MNIST as the source do not correlate

well with the experimental results (cf. Appendix D.2). This is attributed to the limitation of the Inception-Net embedding in

handling grayscale images. Inception-Net operates on color images and offers limited performance on grayscale images.

Table 1 shows that the min sinΘ distance is unable to identify the friendliest neighbor accurately and consistently. For

instance, the ordering of the top three neighbors on MNIST, CelebA or LSUN-Churches identified by using the min sinΘ

distance is not consistent with the ordering suggested by CSIDm and that verified experimentally. However, on the other

datasets, min sinΘ is worse than the InceptionNet approaches for identifying the friendliest neighborhood.

Table 1. The best-case min sinΘ(·) distance between the spaces spanned by the eigenvectors of the source and target datasets. The rows

represent the sources and the columns correspond to the target datasets. The first, second and third friendly neighbors (color coded) of

the target is the source with the three lowest min sinΘ(·) values is that column. We observe that the friendliest neighbor identified by the

min sinΘ distance are generally not in agreement with those identified by FID, KID or CSIDm.

Src

Tar
MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 0 60.74 63.25 85.73 43.19 27.43 23.79 35.35

F-MNIST 96.68 0 69.01 110.7 53.77 36.69 45.02 48.29

SVHN 79.91 54.77 0 57.99 23.62 19.86 25.95 29.55

CIFAR-10 72.16 58.56 35.97 0 7.521 14.63 21.16 15.89

T-ImgNet 70.86 55.43 30.67 14.67 0 13.97 20.05 15.52

CelebA 72.13 60.62 41.35 45.74 22.39 0 19.16 23.48

Ukiyo-E 54.09 59.30 43.08 52.75 25.65 15.29 0 22.50

Church 66.54 57.11 44.02 35.55 17.81 16.80 20.19 0
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Table 2. A comparison of FID between popular training datasets. The rows correspond to the source (Src) and the columns correspond to the

target (Tar). The first, second and third friendly neighbors (color coded) of the target are the sources with the three lowest FID values. FID

fails to detect scenarios where the source possesses lower sample diverse that the target, as in the case of CIFAR-10 and LSUN-Church

sources in comparison to the Tiny-ImageNet target.

Src

Tar
MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 1.2491 175.739 234.850 258.246 264.250 360.622 398.280 357.428

F-MNIST 176.813 2.4936 212.619 188.367 197.057 365.222 387.049 345.011

SVHN 236.707 214.262 3.4766 168.615 189.133 357.193 372.444 356.148

CIFAR-10 259.045 188.710 168.113 5.0724 64.3941 305.528 303.694 256.207

T-ImgNet 264.309 197.918 188.823 64.0312 6.4845 251.198 257.078 203.899

CelebA 360.773 364.586 357.383 303.490 250.735 2.5846 301.108 265.954

Ukiyo-E 396.791 387.088 372.557 300.511 254.102 300.259 5.9137 267.624

Church 350.708 343.781 354.885 254.991 204.162 266.508 267.638 2.5085

Table 3. KID between popular training datasets. The first, second and third friendly neighbors (color coded) of the target (column) are

the sources (rows) with the three lowest KID values. We observe that, akin to FID, the KID measure is also unable to compare the leave

diversity between the source and target datasets, as is the case between Tiny-ImageNet and CIFAR-10.

Src

Tar
MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 2×10
−6

0.1587 0.2428 0.2380 0.2393 0.4284 0.5082 0.4376

F-MNIST 0.1606 1 × 10
−6 0.1922 0.1353 0.1578 0.4291 0.4751 0.3963

SVHN 0.2458 0.1943 2×10
−7

0.1377 0.1674 0.4059 0.4393 0.3962

CIFAR-10 0.2404 0.1357 0.1377 6 × 10
−6

0.0334 0.3205 0.3229 0.2453

T-ImgNet 0.2397 0.1579 0.1667 0.0321 8 × 10
−6

0.2403 0.2595 0.1692

CelebA 0.4388 0.4265 0.4054 0.3165 0.2406 7×10
−6 0.3620 0.2856

Ukiyo-E 0.5064 0.4746 0.4408 0.3183 0.2568 0.3610 2×10
−5 0.3022

Church 0.4379 0.3916 0.3932 0.2408 0.1695 0.2857 0.3019 3×10
−5

Table 4. A comparison of CSIDm between popular training datasets for m = ⌊n

2
⌋. The rows represent the source (Src) and the columns

represent to the target (Tar). The first, second and third friendly neighbors (color coded) of the target are the sources with the three lowest

positive CSIDm values, respectively. CSIDm is superior to FID or KID, as it assigns negative values to source datasets that are less diverse

than the target.

Src

Tar
MNIST F-MNIST SVHN CIFAR-10 T-ImgNet CelebA Ukiyo-E Church

MNIST 0.1865 21.886 37.227 29.298 9.436 198.714 201.550 205.322

F-MNIST 162.962 0.1097 46.938 19.051 -0.5571 167.840 191.010 181.458

SVHN 212.473 77.357 -0.0566 34.534 21.668 195.631 214.507 219.790

CIFAR-10 221.337 65.426 52.051 -0.1478 -7.109 180.491 198.991 173.655

T-ImgNet 230.916 75.737 67.902 12.892 0.6743 157.520 197.447 184.977

CelebA 204.794 68.828 65.299 23.685 8.829 0.6241 184.170 191.927

Ukiyo-E 250.226 92.741 82.157 39.792 18.727 191.930 0.5494 180.697

Church 212.452 48.676 56.136 -4.655 -23.115 185.740 198.750 -0.5258
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Figure 1. SIDm,r as a function of the hyper-cube length r. We observe that MNIST is the closest neighbor to both Fashion-MNIST and

SVHN, while CelebA is marginally closer to Ukiyo-E than the other baselines considered. In scenarios such as case when the target is

CelebA or Ukiyo-E Faces, the SID curve alone cannot be used to conclude the friendliest neighbor of a target dataset, and the area under the

curve, CSIDm is more informative (cf. Table 4) .
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B. The Signed Inception Distance (SID)

In this appendix, we derive a favorable theoretical guarantee of the SID metric, discuss the algorithm for the computation of

SID with relevant ablation experiments on synthetic Gaussian and image datasets.

B.1. Asymptotic Behavior of the Signed Distance

Without loss of generality, consider the signed distance presented in Equation (2) of the Main Manuscript:

SDm,r(µp‖µq) =
1

Mx

Mx
∑

ℓ=1
x̃ℓ∈Cq,r











1

Nq

Nq
∑

j=1
cj∼µq

Φ(xℓ, cj)−
1

Np

Np
∑

i=1
c̃i∼µp

Φ(xℓ, c̃i)











.

Asymptotically, when infinite samples are drawn from the test space, Cq,r, we get

SDm,r(µp‖µq) = lim
Mx→∞















1

Mx

Mx
∑

ℓ=1
x̃ℓ∈Cq,r











1

Nq

Nq
∑

j=1
cj∼µq

Φ(xℓ, cj)−
1

Np

Np
∑

i=1
c̃i∼µp

Φ(xℓ, c̃i)

























.

= κ

∫

x∈Cq,r

{ 1

Nq

Nq
∑

j=1
cj∼µq

Φ(x, cj)−
1

Np

Np
∑

i=1
c̃i∼µp

Φ(x, c̃i)
}

dx,

for some positive constant κ. Similarly, when the number of centers drawn from µp and µq tends to infinity, the inner

summations can be replaced with their corresponding expectations, resulting in

SDm,r(µp‖µq) = κ

∫

x∈Cq,r

lim
Nq→∞

{ 1

Nq

Nq
∑

j=1
cj∼µq

Φ(x, cj)
}

− lim
Np→∞

{ 1

Np

Np
∑

i=1
c̃i∼µp

Φ(x, c̃i)
}

dx.

= κ′

∫

x∈Cq,r

(
∫

y

Φ(x,y)µq(y) dy −

∫

y

Φ(x,y)µp(y) dy

)

dx.

= κ′

∫

x∈Cq,r

(

Ey∼µq
[Φ(x,y)]− Ey∼µp

[Φ(x,y)]
)

dx.

Recall that the samples xℓ are drawn uniformly at random from Cq,r (cf. Section 3.1 of the Main Manuscript). This allows us

to replace the outer integral with another expectation, resulting in

SDm,r(µp‖µq) = Ex∼Cq,r,y∼µq
[Φ(x,y)]− Ex∼Cq,r,y∼µp

[Φ(x,y)] .

The above result links the SD to kernel statistics and provides the asymptotic guarantee that when the two distributions µp and

µq coincide, i.e., µp = µq , and therefore, SDm,r(µp‖µp) := 0.

B.2. SID Computation

The procedure to compute the signed distance between the samples drawn from two distributions is given in Algorithm 1.

While the algorithm is easily implementable for low-dimensional data, an extension to practical settings with images

necessitates computing Inception embeddings over batches of samples. The signed distance (SD) computed over Inception

embeddings is called SID. To extend the SID computation algorithm for evaluating GANs, we consider Dq , the target dataset,

and Dp, samples drawn from the generator. We set |Dq| = |Dp| = 5000. For each r, we average SIDm,r over batches of

size NB = 100. This allows for efficient computation of the Inception features for high-resolution images. Algorithm 2

presents this modified approach for evaluating GANs with SID. We implement the SID computation atop the publicly available

Clean-FID [10] library. Similar to the Clean-FID framework, SID can be computed between any two image folders using the

Clean-FID backend. As a result, the InceptionV3 mapping and resizing functions are consistent with the existing Clean-FID

approach. Details regarding the public release of the Python + TensorFlow/PyTorch library for SID computation are discussed

in Appendix E of this document.
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Algorithm 1: Signed distance (SD) between two distributions

Input: Source data Dp = {c̃i | i = 1, 2, 3, . . . , Np; c̃i ∼ µp}, kernel order m, dimensionality n,

Target data Dq = {cj | j = 1, 2, 3, . . . , Nq; cj ∼ µq}, max radius rmax, step size η,

batch size Mx

Compute: µq = mean (cj ∼ Dq) ; Σq = covariance (cj ∼ Dq)
for k = 0, 1, 2, ...rmax do

Compute: Hypercube length r = η × k ×max(diag(Σq))
Define: Hypercube Cq,r: Center = µq

Sample: xℓ ∼ Uniform [Cq,r] ; ℓ = 1, 2, 3, . . . ,Mx

Compute: SDm,r(µp‖µq) based on Equation (2) of the Main Manuscript

Output: Plot of SDm,r versus r

Algorithm 2: Signed inception distance (SID) between the generator output and target data

Input: Target data Dq = {cj | j = 1, 2, . . . , Nq; cj ∼ µq}, kernel order m, dimensionality n,

max radius rmax, step size η, hypercube sample batch size Mx, Generator G,

Generator batch size NB , Inception model ψ.

Compute: µq = mean (cj ∼ Dq) ; Σq = covariance (cj ∼ Dq)
for k = 0, 1, 2, ...rmax do

for Batches i = 1, 2, . . .
Nq

NB
do

Sample: zℓ ∼ pZ(z); ℓ = 1, 2, 3, . . . , NB – Generator inputs

Sample: c̃ℓ ∼ G(z); ℓ = 1, 2, 3, . . . , NB – Generator outputs

Sample: cj ∼ Dq; ℓ = 1, 2, 3, . . . , NB – Target data samples

Compute: ψ(c̃ℓ) and ψ(cj) – Inception embeddings of generator output and target data.

Compute: Hypercube length r = η × k ×max(diag(Σq))
Define: Hypercube Cq,r: Center = µq

Sample: xℓ ∼ Uniform [Cq,r] ; ℓ = 1, 2, 3, . . . ,Mx

Compute: SIDm,r between ψ(c̃ℓ) and ψ(cj) based on Equation (3) of the Main Manuscript

Compute: CSIDm =
∑

r SIDm,r(µp‖µq)
Output: Plot of SIDm,r versus r; Measure CSIDm

B.3. Experiments on Gaussian Data

To begin with, we present results on computing the signed distance (SD) for various representative Gaussian and Gaussian

mixture source and target distributions.

Figures 2(a)-(c) present the visualization of SD versus r for a Gaussian target distribution with µq = N (5.512, 0.75I2),
where 12 denotes a 2-D vector with all entries equal to 1. Consider the scenario where the source and target Gaussians possess

the same variance, but different means. Consider three different sources µp = N (mp,Σp), given by: (a) mp = 02 and

Σp = 0.75I2; (b) mp = 2.512 and Σp = 0.75I2; and (c) mp = 5.512 and Σp = 0.75I2. We observe that, when the source is

far away from the target, SD is positive-valued and gradually approaches zero. When the two distributions are identical, SD is

zero for all r. In the context of identifying a friendly neighbor, a closer source dataset is expected to converge faster to zero

than one that is far away.

Figures 3(a)-(c) present the results for the other scenario where the mean is fixed, but the variances are different. Consider

the same target as before, but with the following source distributions: (a) mp = 512 and Σp = 0.1I2; (b) mp = 512 and

Σp = 0.25I2; and (c) mp = 12 and Σp = I2. We observe that when the spread of the source is smaller than the target, SD

initially goes negative, and subsequently converges to zero once the hypercube Cq,r encompasses the source. On the other

hand, when the spread of the source is greater than that of the target (as desired for identifying friendly neighbors), SD is

always positive, and converges to zero faster if the relative spread between the source and target is smaller.

To evaluate SD on a Gaussian mixture target, consider an 8-component Gaussian mixture model (GMM) with means drawn

from [0, 1]× [0, 1] and identical covariance matrices 0.02I2. Consider three source distributions: (a) A Gaussian with first

and second moments matching that of the target; (b) An 8-component GMM distinct from the target; and (c) A 4-component
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GMM that has mode-collapsed on to some of the modes of the target. Figures 4(a)-(c) present these three scenarios and the

associated SD versus r. For Scenario (a), although the mean and covariance of both the source and target are identical, we

observe that SD is negative, as the two distributions do not have a large overlap, preventing the positive and negative charges

from cancelling each other. In Scenario (b), SD is able to capture the change in concentration between µp and µq , indicated by

the sudden sign change in SD. When µp converges to a few modes of the target µq, SD is not zero for all r, which indicates

that the two distributions are not identical. In this scenario, however, FID between the two distribution would be close to zero

as they have approximately the same first and second moments.

Animations pertaining to these experiments are available at https://github.com/DarthSid95/clean-sid.

B.4. Evaluating GANs with SID

We consider evaluating pre-trained models with the SID measure to compare the performance with FID and KID. As a

demonstration, we consider StyleGAN2 [11] and StyleGAN3 [12] models with weights trained on 512× 512 high-quality

Animal Faces (AFHQ) dataset [11]. As a reference/benchmark, we also consider SID of the AFHQ dataset with itself. We

consider orders in the range m = ⌊n

2
⌋− 3, ⌊n

2
⌋− 2, . . . ⌊n

2
⌋+2. Figure 5 shows SID for select orders, comparing StyleGAN2

and StyleGAN3. For positive orders, we flip the sign of SID to maintain consistency with the interpretations developed for

the negative order. Across all test cases, we observe that StyleGAN3 outperforms StyleGAN2, as suggested by the FID and

KID values [10]. As the order m reduces, GAN models with lower FID/KID/CSIDm approach zero more rapidly, which can

be used to quantity the relative performance of converged GAN models. For m < ⌊n

2
⌋ − 3 numerical instability causes SID

to approach zero and for m > ⌊n

2
⌋+ 2 numerical instability blows up SID computation. While these experiments serve to

demonstrate the feasibility in evaluating pre-trained GAN models with CSIDm, comparisons between Spider DCGAN and the

corresponding baselines are provided in Section 4 of the Main Manuscript and Appendix D.2 of this Supporting Document,

while comparisons of Spider StyleGANs and baseline StyleGANs on FFHQ and MetFaces is provided in Appendix D.5.

SID can also be used to compare the relative performance of GAN generators. Consider three GANs trained on the MNIST

dataset where one generator has learnt the distribution accurately, while the other two have mode-collapsed on to a subset

of the classes (specifically, digits 0,8,6 and 9) or a single class (digit 4) of the target dataset. Figure 6 presents samples

output by these generators and the SID versus r plot for the corresponding pair of generators. We observe that, when the

reference generator has learnt the target accurately, the SID of a test generator’s output with respect to the reference will

always be negative, as the test generator has less diversity. However, the SID between the output of two generators that have

mode-collapsed would be positive if there is no overlap between the classes they have collapsed to. This could be used to

evaluate GANs with ensemble-generators [13], where each network is trained to learn a different mode/class.
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(a)

(b)

(c)

Figure 2. Plots of the signed distance SDm,r between a source Gaussian µp = N (m, 0.75I2) from a target Gaussian µq =
N (5.512, 0.75I2) for (a) mp = 02; (b) mp = 2.512 ; and (c) mp = 5.512. The closer the source Gaussian is to the target, the

faster SDm,r(µp‖µq) approaches zero. When the two distributions coincide, SDm,r(µp‖µq) is zero for all r.
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(a)

(b)

(c)

Figure 3. Plots comparing the signed distance SDm,r between a source Gaussian µp = N (5.512, 0.75I2) and a target Gaussian

µq = N (5.512,Σp) for (a) Σp = 0.1I2; (b) Σp = 0.25I2; and (c) Σp = I2. When the source Gaussian overlaps with the target

but with a smaller variance, SDm,r is negative. However, if the source has a larger variance than the target, SDm,r is positive.
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(a)

(b)

(c)

Figure 4. Plots comparing the signed distance SDm,r when the target is a Gaussian mixture density. (a) Unimodal Gaussian source with

identical first and second moments as the target; SDm,r is negative as the source has lower diversity than the target. (b) A Gaussian mixture

distinct from the target; SDm,r flips sign based on the relative concentrations of the source and target samples. (c) A mode-collapsed source

results in a non-zero SDm,r although FID and KID between these distributions would be zero.

11



AFHQ StyleGAN2 StyleGAN3

0 20 40 60

r : U [µd − rσd, µd + rσd]

−20

0

20

40

60

80

S
I
D

(p
g
‖
p
d
)

0 5 10 15

r : U [µd − rσd, µd + rσd]

0.0

0.2

0.4

0.6

S
I
D

(p
g
‖
p
d
)

(a) 2m− n = 1 (b) 2m− n = −1

0 5 10 15

r : U [µd − rσd, µd + rσd]

0.000

0.002

0.004

0.006

0.008

S
I
D

(p
g
‖
p
d
)

0 5 10 15

r : U [µd − rσd, µd + rσd]

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

S
I
D

(p
g
‖
p
d
)
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Figure 5. SID versus r for multiple choices of 2m − n for the case when the target dataset is 512 × 512 Animal Faces HQ. Images

generated by StyleGAN2 and StyleGAN3 are compared with the AFHQ dataset as the target. We observe that StyleGAN3 has a performance

comparable to StyleGAN2 for higher orders m. Convergence for lower orders is indicative of superior performance, as the penalty for

mismatch between the source and target distributions increases with decrease in the order. The SID for StyleGAN3 closely matches the

SID of the target data with itself for 2m− n = −5, indicating superior performance to StyleGAN2. This finding is in agreement with the

comparison between StyleGAN2 and StyleGAN3 in terms of FID/KID reported in [10].
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Figure 6. SID versus r when the source and target samples are drawn from GAN generators trained on various subsets of MNIST. When the

source generator has mode-collapsed, either to a single digit or a subset of digits, the corresponding SID is negative. When comparing two

mode-collapsed generators, the SID will be positive as the distributions of the Inception embeddings are less likely to overlap.
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C. Implementation Details

We provide details on the experimental setup, evaluation metrics and computational resources employed in the various

experiments reported in the Main Manuscript and this Supporting Document.

C.1. Experimental Setup

Spider DCGAN: The experiments presented in Section 4 consider the DCGAN [14] architecture for the generator and

discriminator. For the baseline GANs, the parametric input is drawn from R
100. We consider the Gaussian, Gamma [15] and

non-parametric [16] input distributions drawn from R
100 as baselines. In the case of Spider GAN, we conducted experiments

by resizing the input data to 16 × 16 × 3. To bridge the gap between the two noise variants, we also consider Gaussian

noise drawn from R
16×16×3 provided as input in a similar fashion to the datasets. We did not observe improvement in

performance with higher-resolution images for the input dataset. The images are vectorized and provided as input to the

generator. Both Spider DCGAN and the baselines are trained on the Wasserstein GAN [17] loss with a stable version of the

gradient penalty [18] enforced only on samples drawn from pd. The choice was motivated by its successful usage in baseline

StyleGAN2 and StyleGAN3 variants.

The networks are trained on batches of 100 samples. The Adam [19] optimizer is used with a learning rate η = 2× 10
−4,

and the exponential decay parameters for the first and second moments are β1 = 0.5 and β2 = 0.999, respectively. The

implementation was carried out using TensorFlow 2.0 [20]. The networks are trained for 15× 10
3 iterations on MNIST and

Fashion-MNIST, 104 iterations on SVHN and CIFAR-10, and 3× 10
4 iterations on Celeb-A, Ukiyo-E and Tiny-ImageNet

learning tasks.

Spider PGGAN: The publicly available PGGAN GitHub repository (URL: https://github.com/tkarras/

progressive_growing_of_gans) was extended to incorporate the Spider framework. The implementation was

carried out using TensorFlow 2.0 [20]. The input distributions are drawn from PGGAN models, trained on Tiny-ImageNet

images of resolution 16 × 16 × 3. The input PGGAN was trained for 12 × 10
3 iterations. Samples drawn from the input

PGGAN are resized to 14× 14× 3, vectorized, and provided as input to the cascaded Spider PGGAN layer.

Spider StyleGAN: The publicly available, PyTorch 1.10 [21] based StyleGAN3 GitHub repository (URL: https://

github.com/NVlabs/stylegan3) was extended to incorporate the Spider framework, allowing for the implementation

of both StyleGAN2, StyleGAN2-ADA and StyleGAN3 variants. The input distributions are drawn from StyleGAN2-ADA

models, trained on (a) Tiny-ImageNet images of resolution 16× 16× 3; and (b) Images from the AFHQ-Dogs dataset, resized

to 16× 16× 3. The input StyleGAN was trained for 25× 10
3 iterations in both cases. We considered the following two input

transformations to obtained 512-dimensional input vectors: (i) Samples drawn from the input StyleGAN are averaged across

the color channels, resized to 16×32×1, vectorized, and provided as input to the cascaded layer; and (ii) Samples drawn from

the input StyleGAN are averaged across the color channels, resized to 23× 23× 1 and vectorized. The vectors are truncated

to 512 entries, and provided as input to the cascaded stage. We did not observe a significant difference in performance when

considering either of the two configurations. As in classical StyleGANs, the cascaded StyleGAN network transforms the input

dataset to the latent W-space, and subsequently learn the target. Spider StyleGANs are trained with transformation-(i) on

FFHQ and AFHQ-Cats data, while transformation-(ii) is used to train the Spider StyleGAN variants on Ukiyo-E faces and

MetFaces.

C.2. Evaluation Metrics

To draw a fair comparison with the baseline approaches, we evaluate various Spider GAN and baseline models in terms

of their FID, KID and CSIDm. We also compare the interpolation quality of the networks based on the sharpness of the

interpolated images.

Fréchet Inception Distance (FID): Proposed by Heusel et al. [22], FID can be used to quantify how real samples generated by

GANs are. FID is computed as the Wasserstein distance between Gaussian distributed embeddings of the generated and target

images. To compute the image embedding, we consider the InceptionV3 [23] model without the topmost layer, loaded with

weights for the ImageNet [24] classification task. Images are resized to 299× 299× 3 and given as input to these networks.

Grayscale images are replicated across the color channels. FID is computed by assuming a Gaussian prior on the embeddings

of real and fake images. The means and covariances are estimated using 10, 000 samples. The publicly available TensorFlow

based Clean-FID library [10] is used to compute FID. As noted by Parmar et al. [10], the Clean-FID is generally found to

be a few points higher than those computed through base PyTorch and TensorFlow implementations. Our implementation

of the DCGAN baselines [15, 16] also exhibit similar offsets between the reported FID and those computed by Clean-FID.

However, in our experiments, we were able to reproduce the scores reported in [10] for PGGAN and StyleGAN architectures

fairly accurately.
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Kernel Inception Distance (KID): The kernel inception distance [25] is an unbiased alternative to FID. The KID computes

the squared maximum-mean discrepancy (MMD) between the InceptionV3 embeddings of data in R
n. The embeddings are

computed as in the FID case. The third-order polynomial kernel K(x,y) =
(

1

n
x
T
y + 1

)3
is used to compute the MMD over

a batch of 5000 samples. As in the case of FID, to maintain consistency, we use the Clean-FID [10] library implementation of

KID.

Image Interpolation and Sharpness: In order to compare the performance of GAN for generating unseen images, we evaluate

the output of the generator when the interpolated points between two input distribution samples are provided to the generator.

We use the sharpness metric introduces by Tolstikhin et al. [26] in the context of Wasserstein autoencoders. The edge-map of

an image is obtained using the Laplacian operator. The average sharpness of the images is then defined as the variance in

pixel intensities on the edge-map, averaged over batches of 50, 000 images. In the case of of baseline GAN, the inputs are

interpolated points between random samples drawn from the parametric noise distribution, while in the case of Spider GAN,

the interpolation between two images from the input dataset are fed to the generator.

C.3. Computational Resources

All experiments on low-resolution (≤ 32× 32× 3) images with the DCGAN architecture were conducted on workstations

with one of two configuration: (a) 4× NVIDIA 2080Ti GPUs with 11 GB visual RAM (VRAM) each, and 256 GB system

RAM; and (b) 2× NVIDIA 3090 GPUs with 24 GB VRAM and 256 GB system RAM. The high-resolution experimentation

involving PGGAN or StyleGAN was carried out on workstations with one of the two configurations: (i) NVIDIA DGX with

8× Tesla V100 GPUs with 32 GB VRAM each, and 512 GB system RAM; and (ii) 8× NVIDIA A6000 GPUs with 48 GB

VRAM each, and 512 GB system RAM. The memory requirements and training times for StyleGAN and PGGAN variants are

on par with training times reported for the baselines [27, 12].

DCGAN CAE

Figure 7. Images generated by Spider GAN on Fashion-MNIST and Ukiyo-E Faces, given the friendliest neighbor input as identified by SID.

Both CAE and DCGAN result in images of comparable visual quality on Fashion-MNIST. However, for high-resolution image generation

on 256-dimensional Ukiyo-E Faces, the fully convolutional structure of the CAE generator result in images of poorer visual quality than

those generated by DCGAN.
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Figure 8. FID versus iterations for training baseline and Spider GAN variants. Spider GAN trained with the friendliest neighbor identified in

Section 3 (of the Main Manuscript) result in the best (lowest) FID scores. On MNIST, Spider DCGAN approaches converge an order faster

than the baseline counterparts.

Table 5. Comparison of FID, KID and CSIDm for the Spider DCGAN and baseline variants on Fashion-MNIST, SVHN, Tiny-ImageNet,

and CelebA datasets. Spider DCGANs with friendly neighborhood inputs outperform the baselines with parametric and non-parametric

priors. The performance of Spider DCGAN with MNIST or Fashion-MNIST as the input is sub par when the target is a color-image dataset.

Input Distribution
Fashion-MNIST SVHN Tiny-ImageNet CelebA

B
as

el
in

es

FID KID CSIDm FID KID CSIDm FID KID CSIDm FID KID CSIDm

Gaussian (R100) 76.60 0.0557 22.24 135.4 0.1245 30.02 89.94 0.0657 18.06 50.32 0.0554 24.31

Gamma (R100) 65.36 0.0513 19.72 130.8 0.1181 27.13 83.33 0.0536 14.63 40.69 0.0544 20.98

Non-Parametric (R100) 62.42 0.0426 21.96 107.2 0.1053 33.52 82.37 0.0579 13.25 40.41 0.0543 72.18

Gaussian (RH×W×C) 119.2 0.0905 28.96 113.7 0.1121 31.45 103.0 0.0844 15.62 83.61 0.0912 113.4

S
p

id
er

G
A

N

MNIST 56.59 0.0387 18.50 95.71 0.0817 20.62 96.91 0.0669 14.95 40.78 0.0595 32.70

Fashion MNIST – – – 115.0 0.1096 32.57 108.8 0.0667 13.06 35.18 0.0574 23.98

SVHN 79.14 0.0526 24.67 – – – 98.11 0.0655 15.62 40.27 0.0575 20.64

CIFAR-10 92.60 0.0658 30.21 101.8 0.0998 32.40 98.22 0.0642 17.90 36.16 0.0508 22.16

TinyImageNet 130.5 0.0883 22.26 111.7 0.1082 31.77 – – – 29.47 0.0468 18.16

CelebA 81.38 0.0604 24.73 108.9 0.1029 22.77 75.68 0.0511 12.42 – – –

Ukiyo-E 66.90 0.0475 23.29 114.8 0.1145 38.28 88.51 0.0612 16.01 39.41 0.0630 28.23

LSUN-Churches 102.9 0.0774 33.87 106.8 0.1020 26.52 92.86 0.0697 15.98 53.01 0.0636 25.72

D. Additional Experimentation on Spider GAN

We now discuss additional experimental results and ablation studies on various Spider GAN flavors presented in the Main

Manuscript. One could also extend the Spider philosophy to VQGAN [28, 29] or diverse class-conditional models [30, 31]

D.1. Exploring Generator Architectures

We now discuss the choice of the generator architecture in Spider GAN (cf. Section 4 of the Main Manuscript). We consider

two network architectures:

• DCGAN: We consider standard DCGAN where the images from the friendly neighborhoot are resized, vectorized, and

provided as input to generator as described in Appendix C.1.

• Convolutional autoencoder (CAE): In this setup, the images are resized to 16 × 16 × 3 and provided as input to

convolutional layers to learn a low-dimensional latent representation. The output image is generated by deconvolution

layers.
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Table 6. A comparison of FID and KID in Spider GAN for various noise perturbations considered when the input dataset is Ukiyo-E

Faces. Gaussian perturbations such as N (0, 0.25I) and N (0, 0.1I) that are concentrated about their mean result in the best performance

improvements over the baseline Spider GAN.

Input Distribution
Fashion-MNIST CIFAR-10

FID ↓ KID ↓ FID ↓ KID ↓

Ukiyo-E Faces 55.1200 0.0376 74.7085 0.0518

Ukiyo-E + N (0, 0.1I) 47.2873 0.0285 70.101 0.0488

Ukiyo-E + N (0, 0.25I) 50.2150 0.0345 68.7473 0.0473

Ukiyo-E + N (0, I) 79.8415 0.0690 71.9181 0.0531

Ukiyo-E + Gamma noise 51.8201 0.0343 70.362 0.0476

Ukiyo-E + Non-parametric noise 50.8536 0.0329 72.9138 0.0495

The number of trainable parameters are fewer for the CAE architecture than the DCGAN approach in both cases. Figure 7

shows the output images generated by these approaches considering the friendliest neighbor (as suggested by Tables 1-4)

provided as input when learning the Fashion-MNIST and Ukiyo-E Faces datasets. We observe that the CAE based Spider

GAN outperforms the DCGAN approach on Fashion-MNIST. However, on higher resolution images, multiple visual artifacts

were found as a consequence of the fully convolutional architecture. We observed similar degradation in image quality when

training Spider GAN with CAE on other high-resolution datasets such as CelebA. We therefore consider the DCGAN approach

in the experiments presented in Section 4 of the Main Manuscript and Appendix D.2.

D.2. Additional Experiments on Spider DCGAN

We now present results on additional experimental validation run on the Spider DCGAN architecture. The experimental

setup is the same as the one described in Appendix C.1. First, we consider training Spider GAN on Fashion-MNIST, SVHN,

Tiny-ImageNet and 64-dimensional CelebA datasets. The FID and KID of the converged models are presented in Table 5. On

the Fashion-MNIST, SVHN, and CelebA datasets, we observe that the Spider GAN approach with the friendliest neighbor

(as identified by FID, KID and CSIDm), results in improved learning over the baselines. On the Tiny-ImageNet learning

task, we observe that a source dataset with less diversity (such as CIFAR-10, as suggested by FID and KID) performs poorly,

while a more diverse source dataset, such as CelebA, improves the best-case FID over the baselines. These results validate the

friendly neighborhood of Tiny-ImageNet identified using CSIDm in Section 3 of the Main Manuscript, where CIFAR-10 and

LSUN-Churches are less diverse, having a negative CSIDm. Figures 10-16 present the images generated by Spider GAN and

the baseline variants on various datasets considered. Figure 8 presents the convergence of FID as a function of iterations for the

remaining source dataset combinations of Spider GAN models considered in Section 4 and Figure 4 of the Main Manuscript.

D.2.1 Noise Perturbations on the Input Dataset

The SpiderGAN framework relies on the variability present in the chosen input dataset to learn the target better. As discussed

in Section 4 of the Main Manuscript, we considered addition of noise to the dataset input to the Spider GAN generator when

the cardinality of the input is small. We observed that CelebA or Tiny-ImageNet are more diverse and perform better than small

datasets such as Ukiyo-E Faces. To overcome the lack of diversity in small datasets, we consider additive-noise perturbations

to augment the data. While Gaussians are a popular choice, we also consider the Gamma density and non-parametric densities

to generate noise, which are known to improve the performance of the GANs on latent-space interpolation. We consider three

Gaussian examples: the standard normal N (0, I), N (0, 0.25I), and N (0, 0.1I). Three variances are considered to highlight

the trade-off between generating noisy images (Gaussians with high variance) and low diversity in the input dataset (Gaussians

with low variance). We present results on learning MNIST and CIFAR-10 datasets with Ukiyo-E Faces dataset as input.

Results: Figures 17(a)-(f) show the images generated by Spider GAN with various noise perturbations applied to Ukiyo-E

Faces. Adding Gaussian noise with a small variance, or Gamma distributed noise results in diverse images and better visual

quality of generated images. On the other hand, models trained with the standard normal or non-parametric densities resulted

in poor learning, with several out-of-distribution images. The performance of the converged models in presented in Table 6.
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Perturbations that are Gaussian, and concentrated about the mean, such as N (0, 0.1I) or N (0, 0.25I) resulted in the lowest

FID and KID. Therefore, Gaussian perturbations with a small variance result in better performance when the input datasets

have small cardinality.

Table 7. Comparison of sharpness metric evaluated on interpolated images in MNIST, CIFAR-10 and Ukiyo-E learning tasks. The benchmark

sharpness is computed on target data samples. Spider GAN variants outperform the baselines on CIFAR-10 and MNIST, while being on par

with the non-parametric prior on the Ukiyo-E Faces. The values shown in bold are closest to the benchmark sharpness.

Input Distribution
Sharpness of the Interpolated Image

B
as

el
in

es

MNIST CIFAR-10 Ukiyo-E

Gaussian 0.0868 0.587 1.730

Gamma 0.0536 1.217 1.981

Non-parametric 0.2522 0.785 2.538

S
p

id
er

G
A

N

MNIST – 0.467 2.008

Fashion MNIST 0.1408 0.377 1.353

SVHN 0.0898 1.214 1.480

CIFAR-10 0.0859 – 2.533

TinyImageNet 0.0623 0.906 1.274

CelebA 0.1735 0.449 2.104

Benchmark 0.1396 0.993 2.748

Table 8. Comparison of Interpolation FID and Interpolation KID for the Spider GAN and baseline variants on MNIST, CIFAR-10, and

Ukiyo-E Faces datasets. The input provided to the generator zin = z1+z2

2
; z1, z2 ∼ pZ is the mid-point between two samples drawn from

the input distribution pZ , either of parametric form in the case of the baselines, or the friendly neighborhood datasets, in the case of Spider

GAN. The values in the parentheses indicate the relative increase in the FID/KID scores, in comparison to those reported in Table 2 of the

Main Manuscript. Spider GANs with friendliest neighborhood input datasets achieve FID and KID scores on par with the best-case baseline.

Input Distribution
MNIST CIFAR10 Ukiyo-E Faces

FID KID FID KID FID KID

B
as

el
in

es

Gaussian (R100)
25.111 0.0181 121.198 0.0848 74.241 0.0612

(+16.8%) (+30.2%) (+68.7%) (+36.9%) (+3.1%) (+14.4%)

Gamma (R100)
23.564 0.0149 77.113 0.0492 70.302 0.0558

(+11.3%) (+12.1%) (+6.1%) (+1.8%) (+0.4%) (+18.7%)

Non-Parametric (R100)
22.301 0.0142 87.478 0.0568 66.022 0.0434

(+6.4%) (+3.6%) (+16.7%) (+7.1%) (+1.0%) (+3.0%)

S
p

id
er

G
A

N

MNIST – –
122.084 0.0790 103.80 0.0732

(+71.2%) (+47.5%) (+51.4%) (+67.1%)

Fashion MNIST
20.644 0.0147 113.109 0.0731 89.901 0.0654

(+22.8%) (+42.7%) (+46.7%) (+32.9%) (+23.6%) (+43.7%)

SVHN
27.630 0.0208 89.161 0.0558 77.302 0.0542

(+1.8%) (+1.5%) (+39.1%) (+23.7%) (+10.0%) (+12.4%)

CIFAR-10
30.214 0.0305

– –
87.981 0.0621

(+3.4%) (+38.6%) (+24.2%) (+17.1%)

TinyImageNet
46.233 0.0397 86.708 0.0520 79.848 0.0565

(+41.6%) (+50.4%) (+47.3%) (+70.4%) (+28.9%) (+29.5%)

CelebA
21.517 0.0152 86.475 0.0534 68.849 0.0449

(+4.6%) (+5.5%) (+43.9%) (+23.0%) (+27.2%) (+10.1%)

Ukiyo-E
38.950 0.0318 98.045 0.0671

– –
(+26.9%) (+39.4%) (+60.6%) (+83.8%)

18



D.2.2 Input-space Interpolation with Spider DCGAN

Gamma and non-parametric priors were introduced to the GAN landscape to improve the quality of interpolated images in

GANs [15, 16]. We compare the image interpolation quality of Spider GAN with respect to the gamma and non-parametric

baselines. The experimental setup is similar to that in Appendix C.1. We compare the visual quality of images generated by

interpolated inputs to the generator. In the baseline GANs, we provide the generator with eight linearly interpolated points

between two random samples drawn from the prior densities. In the case of Spider GAN, we draw two random samples from

the input dataset, and generate eight linearly interpolated images that are input to the Spider GAN generator. The quality of the

interpolation is evaluated in terms of the sharpness metric. We present results on MNIST, CIFAR-10, and Ukiyo-E Faces.

Figures 18-20 present the images generated by the interpolated input vectors by the three baseline GAN variants and Spider

GAN with the three friendliest neighbors as the input datasets. We observe that, Spider GAN, although not trained for the task,

is able to generate realistic interpolated images. The visual quality is on par with the non-parametric interpolation scheme in

the case of MNIST, and superior to the baselines on the Ukiyo-E Faces learning task. All variants fail to generate realistic

images on CIFAR-10. Table 7 shows the sharpness metric computed on the interpolated images. We observe that Spider

GAN variants attain values closer to the benchmark in comparison with the baselines. As discussed in the Main Manuscript,

the best performance of Spider GAN is achieved when the input dataset is the friendliest neighbor of all the target datasets

under consideration. Table 8 presents the FID and KID scores of the Spider GAN and baseline variants, when computed

on a batch of 104 samples obtained by proving the mid-point sample zin = z1+z2

2
; z1, z2 ∼ pZ as input to the generator.

The inputs z1 and z2 are samples drawn from parametric distributions as in the case of the baselines, or images from the

friendly neighborhood input dataset as in the case of Spider GAN. Table 8 also shows the relative increase in FID and KID

compared to those obtained when unaltered samples drawn from pZ are provided as input to the generator (cf. Table 2 of the

Main Manuscript). Across all the datasets considered, we observe that Spider GAN variants with the friendliest neighbor

input result in a performance comparable with the best-case baselines in terms of FID and KID. However, the baselines GAN

with the non-parametric or gamma-distributed priors, which are designed to minimize the interpolation error [15, 16], and

consequently, result in lower relative change in the scores. The results suggest that, while Spider GAN is superior to Gaussian

latent spaces, a trade-off exists between the interpolated image quality offered by non-parametric or gamma priors, and the

overall superior performance offered by Spider GAN. A detailed discussion on the input-space control over the generated

images is discussed in the context of Spider StyleGAN2-ADA in Appendix D.5.1

D.2.3 Impact of Diversity and Dataset Bias on Spider GANs

The friendly neighbourhood of a target in SpiderGAN is chosen based on the SID metric, which compares the distance between

data manifolds. SpiderGAN does not enforce image-level structure to learn pairwise transformations. We therefore expect that

the diversity of the source dataset (such as racial or gender bias) should not affect the diversity in the learnt distribution. To

demonstrate this, consider the task of learning Ukiyo-E faces dataset with CelebA dataset as input. We consider three variants

of CelebA – (i) The entire dataset of 2 × 105 images, comprising an even split of the male and females classes; (ii) Only

the female class comprising 105 images; and (iii) A simulated imbalance, created by including the entire male class and 200

images from the female class. The input resolution is 64× 64, while the output resolution is set to 128× 128. The models are

trained using the DCGAN architecture with hyperparameters as described in Appendix C.1. All the models are trained for 105

generator iterations.

The images output by the Spider GAN model in each case are presented in Figure 21 (a.1-a.3). We did not observe bias in

the images generated by the three models. To demonstrate this further, we compared the Spider GAN outputs for the same

20 samples of the female class images provided as input (cf. Figure 21 (a)). The results indicate that, while correspondence

between images is not learnt, the bias in the source dataset of the generator in SpiderGAN does not affect the target diversity.

The bias in these datasets is neither leveraged, nor exemplified by Spider GAN.

D.2.4 Mode Coverage in Spider GANs

In order to evaluate the mode coverage in Spider GAN learning, consider the partial MNIST experiment proposed by Zhong et

al. [32] involving the 11-class augmented Fashion-MNIST dataset consisting of an additional 100 images drawn from from the

digit 1 class of MNIST. We train SpiderGAN on the Fashion-MNIST dataset with the CAE architecture (cf. Appendix D.1).

We consider two input datasets: CIFAR-10 and Tiny-ImageNet.

In order to evaluate mode coverage, the trained GAN generators are compared on the ability to faithfully generate samples

from the underrepresented digit 1 class. For evaluation, a 11-class fully-connected classifier is trained on the augmented
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dataset consisting of all 10 classes from Fashion-MNIST and the entire digit 1 class from MNSIT. Following the approach

presented in [32], the GANs are evaluated by sampling a batch of 9× 105 images, and computing the number of instances of

digit 1 generated, as indicated by the output of the classifier. We compare against the DCGAN, AdaGAN [33] and the GAN

with mixture of generators (MixGAN) [32]. The images from digit class 1 generated by the Spider GAN variants are presented

in Figure 9, while Table 9 summarizes the performance of the baseline and Spider GAN models. The results highlight the need

for class diversity in the input dataset. When SpiderGAN is trained with CIFAR-10, consisting of fewer classes than the target,

the minority digit 1 class is poorly represented. On the other hand, for Spider GAN with Tiny-ImageNet or CelebA as the

input, the minority class is generated faithfully.

D.2.5 Learning the Identity Mapping

Based on the intuition that GAN generators perform entropy minimization [34], we expect the generator to learn an identity

mapping when the same dataset is provided as both input and output. To validate this, we consider the Fashion-MNIST

learning task with the DCGAN architecture. We considered all four combinations of adding noise to the input or target datasets.

The learnt input-output pairs are presented in Figure 22. In all four scenarios, although pairwise consistency is not explicitly

enforced, it was discovered by Spider GAN, resulting in a GAN generator that approximates an identity function. When the

input and output datasets are both noisy, the generator attempts to retain the noise in the generated images. However, when the

input dataset is clean but the target dataset incorporates noise, artifacts are introduced in the generated images as the models

attempts to create noise (which has a higher entropy than the dataset).

Table 9. Mode coverage of Spider GAN in comparison to baseline GANs on the Fashion-MNIST and partial MNIST experiment. The ∗

indicates values reported by Zhong et al. [32]. The measure #1s indicates the number of the samples from the digit class 1 predicted in a

batch of 9 × 10
5 samples drawn the generator. Avg. Prob. denotes the average classification probability of digit class 1 samples output

by a pre-trained classifier. Spider GAN trained with an input dataset that posses higher diversity than the target, such as Tiny-ImageNet,

outperforms the baselines.

Measure

(↑)
DCGAN∗ AdaGAN∗ MixGAN∗ Spider GAN (CIFAR-10

Source)

Spider GAN

(Tiny-ImageNet Source)

#1s 13 60 289 201 345

Avg. Prob. 0.49 0.45 0.69 0.81 0.89

(a) (b)

Figure 9. Images from the digit class 1 generated by Spider GAN with input images drawn from (a) CIFAR-10, and (b) Tiny-ImageNet

datasets. The samples were identified based on the output of a pre-trained 11-class classifier network. Spider GAN with an input class

diversity lower than the target (CIFAR-10 dataset) generated images of inferior quality in comparison to the Spider GAN trained on a more

diverse input dataset such as Tiny-ImageNet.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) Fashion-MNIST input

(e) SVHN input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 10. Images generated by the baseline GAN and Spider GAN for various input distributions, with MNIST being the target. Spider

GAN trained with Fashion-MNIST input (the friendliest neighbor of MNIST as identified by SID) generates sharper output images.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) SVHN input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 11. Images generated by the baseline GAN and Spider GAN for various input distributions, with Fashion-MNIST chosen as the

target. A poor choice of the input distribution results in a suboptimal generator that outputs low-quality images. For instance, the output

generated for inputs coming from CelebA or a non-parametric distribution.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) CIFAR-10 input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 12. Images generated by the baseline GAN and Spider GAN for various input distributions, when trained with SVHN as the target. A

poor choice of the input distribution results in low-quality images output by the generator.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) Tiny-ImageNet input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 13. Images generated by the baseline GAN and Spider GAN with CIFAR-10 as the target, for various input distributions. While some

classes, such as the horse, car or boat are well generated by all GAN, neither the baseline GANs nor the Spider GANs are able to reliably

learn all the classes in CIFAR-10.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) CelebA input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 14. Images generated by the baseline GAN and Spider GAN on Tiny-ImageNet as the target, for various input distributions as

indicated. While Spider GAN approaches achieve a lower FID than the baselines on this task, none of the GAN variants generate realistic

output images.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) Tiny-ImageNet input

(i) Ukiyo-E Faces input (j) LSUN-Churches input

Figure 15. Images generated by the baseline GAN and Spider GAN on the low resolution CelebA (64×64), given various input distributions.

Images generated by Spider GAN trained with Tiny-ImageNet and Ukiyo-E Faces as the input outperform other GAN flavors.
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(a) Gaussian input (b) Gamma input

(c) Non-Parametric input (d) MNIST input

(e) Fashion-MNIST input (f) SVHN input

(g) CIFAR-10 input (h) Tiny-ImageNet input

(i) CelebA input (j) LSUN-Churches input

Figure 16. Images generated by the baseline GAN and Spider GAN variants on the Ukiyo-E Faces for different inputs to the generator.

Images generated by Spider GAN with Tiny-ImageNet or CelebA images as input results in sharper images in comparison to the baselines.
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Figure 17. Images generated by Spider GAN on Fashion-MNIST and CIFAR-10, when trained with the Ukiyo-E Faces as input. Ukiyo-E

Faces are perturbed mildly with various parametric noise sources to enhance the input diversity. Gaussian perturbations result in superior

image quality compared to the rest.
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(a) Input Samples from the Female Class of the source CelebA dataset.

(a.1) Corresponding outputs for balanced source data.

(a.2) Corresponding outputs for source data bias: 100% Males class + 0.2% Female Class.

(a.3) Corresponding outputs for source data bias: 0% Males class + 100% Female Class.

Figure 21. Images generated by Spider GAN when trained on the Ukiyo-E Faces as the target dataset, with varying levels of bias simulated

in the source CelebA dataset. The output images (a.1-a.3) correspond to the generator input with the same Females class CelebA images

depicted. The bias in the input dataset does not carry over to the generator outputs in Spider GAN formulation. Irrespetive of the class

imbalance in the source CelebA images, the generated Ukiyo-E Faces posses sufficient class diversity.
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(a) Input Samples drawn from Fashion-MNIST.

(a.1) Spider GAN ouptut when trained on noisy Fashion-MNIST as target.

(a.2) Spider GAN output when trained on Fashion-MNIST as target.

(b) Input Samples drawn from noisy Fashion-MNIST.

(b.1) Spider GAN ouptut when trained on noisy Fashion-MNIST as target.

(b.2) Spider GAN output when trained on Fashion-MNIST as target.

Figure 22. Images generated by Spider GAN when trained on various combinations of noisy and clean Fashion-MNIST images provided as

the input and output to the GAN. In all scenarios, although pairwise consistency was not explicitly enforced, it was discovered by Spider

GAN network. When the input and output datasets are (a.2) both clean, or (b.1) both noisy, the generator attempts to learn an identity

mapping. When the input dataset is clean but the target dataset incorporates noise (a.1), we observe artifacts in the generated images.

SpiderGAN with a noisy input dataset and clean target samples learns a denoising network.
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Figure 23. Spider GAN based progressively growing GAN (PGGAN) architecture. The output distribution of PGGAN trained on Tiny-

ImageNet data is provided as input to the second Spider PGGAN stage that is trained to learn a high-resolution, small-sized dataset such as

Ukiyo-E Faces.

D.3. Classconditional Spider GAN

We present a Spider counterpart to the auxiliary classifier GAN (ACGAN [35]) formulation, entitled Spider ACGAN.

In Spider ACGAN, the discriminator not only provides a real versus fake classification of its input, but also provides a

prediction of the class from which the sample is drawn. The discriminator is trained to minimize both the WGAN loss with

the Rd penalty [18], and the classification cross-entropy loss. We consider two variants of the generator, one without class

information, and the other with the class label provided as a fully-connected embedding to the input layer. The Spider ACGAN

variants are compared with the un-conditioned Spider GAN baseline. We present experiments on learning Fashion-MNIST

dataset with MNIST as the input. The pairwise correspondences between the input and output images are presented in

Figures 24-26. While Spider ACGAN without generator embeddings is superior to the baseline Spider GAN in learning

class-level consistency, mixing between the classes is not eliminated. However, with the inclusion of class embeddings in the

generator, the disentanglement of classes can be achieved in Spider ACGAN.

While this experiment demonstrates the feasibility of employing Spider GAN in class-conditional settings, scenarios

involving mismatch between the number of classes in the input and output datasets, is a promising direction for future research.

D.4. Additional Experiments on Spider PGGAN

We now present additional experiments conducted with the Spider PGGAN architecture, and present the images generated

by the Spider PGGAN variants. Figure 23 depicts the philosophy employed in a two-stage cascaded Spider PGGAN model

considered in Section 5.1 of the Main Manuscript, where the input-stage PGGAN generated Tiny-ImageNet images, while the

second Spider PGGAN stage transforms Tiny-ImageNet into Ukiyo-E Faces. Consider two extensions of the Spider PGGAN

training algorithms: (a) The Spider PGGAN is trained on 32× 32× 3 CIFAR-10 data with the input images drawn from the

output of a PGGAN pre-trained on Tiny-ImageNet. Additionally, weights from PGGAN pre-trained on Tiny-ImageNet are

transferred to Spider PGGAN for all layers but the first because the dimensionality in the first layer does not match. The

trained model achieves an FID of 9.56, which is an improvement over the base Spider GAN trained on CIFAR-10 without

the weight transfer. Images generated by Spider PGGAN with weight transfer are shown in Figure 28. This suggests that

other network modifications and augmentations can be used in combination with the Spider GAN framework to improve the

performance of PGGAN. (b) We train the Spider PGGAN with multiple cascade layers. The output of a Stage-I PGGAN

pre-trained on Tiny-ImageNet is used to train a Spider PGGAN (Stage-II) to generate CIFAR-10 images. The output of the

converged second stage model is used to generate high-resolution Ukiyo-E and MetFaces images (Stage-III). The final model

achieves an FID of 45.32 on MetFaces (a 12% improvement over a single-stage Spider PGGAN), and 57.63 on Ukiyo-E Faces

(a 10% improvement over single stage). The MetFaces images generated by the cascade network, juxtaposed the images

generated by the baseline methods are provided in Figure 32. These results suggest that having multiple stages of pre-trained

networks in the Spider PGGAN, and training incrementally results in superior performance than a single-stage Spider PGGAN.

D.5. Additional Experimental on Spider StyleGAN

The philosophy behind StyleGAN [11, 12] architectures run parallel to our proposed philosophy, where a mapping network

is used to learn editable intermediate representations of the input noise distribution. A synthesis network subsequently

transforms this representation into an image. The Spider GAN approach can be incorporated readily into any StyleGAN

network, by replacing the input noise distribution to the mapping network with samples from the input dataset, drawn from a

pre-trained GAN.

We trained the Spider variants of StyleGAN2, StyleGAN2-ADA [11] and StyleGAN3 [12] on the Ukiyo-E Faces, MetFaces,

FFHQ, animal faces HQ Cats (AFHQ-Cats) dataset using the various combinations that included adaptive regularization and

weight transfer. Across all experiments, two pre-trained networks were employed to generated the input dataset distribution
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– (i) A StyleGAN2-ADA network trained on the AFHQ-Dogs dataset of resolution 32 × 32; and (ii) A StyleGAN2-ADA

network trained on the Tiny-ImageNet dataset of resolution 32 × 32. The outputs are transformed based on the approach

described in Appendix C.1. To generate higher-quality samples, we adopted the popular truncation trick [30] in sampling from

the input-stage generator – The input-stage baseline generator is trained to transform samples drawn from the standard normal

distribution to those coming from Tiny-ImageNet, or AFHQ-Dogs datasets. When generating the inputs to the cascaded

SpiderGAN stage, samples are drawn from a truncated Gaussian, where a sample is re-drawn if it lies outside the [−2, 2]n

hypercube (a 2σ interval). This was shown to improve the generator output quality at a small cost of marginally reduced sample

diversity [30]. On the experiments on learning Ukiyo-E Faces, MetFaces, and FFHQ with cascaded Spider StyleGAN2-ADA,

the truncation trick resulted in a 10% improvement in FID on the average. Figure 29 presents the images generated by these

models considering baseline sampling and the truncation trick.

The comparison of FID and CSIDm of the StyleGAN variants trained on FFHQ are provided in Table 10. Spider StyleGAN2-

ADA with the Tiny-ImageNet input achieved an FID score on par with StyleGAN-XL, a model with three-fold higher network

complexity. However, in terms of CSIDm, Spider StyleGAN2-ADA achieves state-of-the-art performance, which suggests that

the diversity of images generated by Spider StyleGAN2-ADA is superior to that of StyleGAN-XL. The Spider StyleGAN3

model with weight transfer achieves a state-of-the-art FID of 3.07 on AFHQ-Cats, with one-fourth of the training iterations

as the baselines. The accelerated convergence can be attributed to the superior initialization in the Spider GAN framework,

as opposed to initializing with high-dimensional Gaussian inputs. Figures 30- 41 show the images generated by the various

models and side-by-side comparison of the images generated by Spider StyleGAN and baseline variants.

D.5.1 Interpolating with Spider StyleGAN3

In order to better understand the control over representations that the Spider framework provides, we consider interpolation

experiments on cascaded Spider StyleGAN2-ADA. A pre-trained SpiderStyleGAN2 with Gaussian distributed input and

AFHQ-Dogs as output forms the input-stage network. The outputs of this network serve as the input to Spider StyleGAN2-ADA.

As discussed in Section 5.2, we consider the following two interpolation schemes:

• Scheme-1, where interpolation is carried out between the AFHQ-Dogs images generated by the input-stage GAN, and

subsequently fed to cascaded Spider GAN stage. Figures 42, 44 and 46 present the outputs of the first- and second-stage

GANs, when trained on Ukiyo-E Faces, MetFaces and FFHQ images, respectively.

• Scheme-2, where linear interpolation is performed in the Gaussian space. The corresponding samples are used to generate

AFHQ-Dogs images, which are fed as input to the Spider GAN stage. Figures 43, 45 and 47 show the intermediate

AFHQ-Dogs and Spider GAN outputs for this configuration, when trained on Ukiyo-E Faces, MetFaces and FFHQ

images, respectively.

Across all datasets, we observe that Scheme-1 results in superior control over the features, with gradual, fine-grained transitions

between the images. On the other hand, images generated by Scheme-2 are affected by the known caveats of Gaussian-space

interpolation [15, 16]. Interpolations of Gaussian-distributed points have a very low probability of lying on the Gaussian

manifold. Consequently, the generated AFHQ-Dogs images, and the the subsequent target-dataset images possess unnatural

discontinuities, appearing unrealistic. In the case of generating FFHQ and Ukiyo-E Faces, this results in the generation of

noisy images at intermediate locations.
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Table 10. A comparison of StyleGAN2-ADA and StyleGAN3 variants, in terms of FID, KID and CSIDm, on learning FFHQ. A † indicates a

reported score. Spider StyleGAN2-ADA performs on par with the state-of-the-art StyleGAN-XL (three fold higher network complexity) [36]

in terms of FID and KID. However, Spider StyleGAN2-ADA variants achieved the best (lowest) CSIDm scores, which suggests that the

Spider variants learnt more diverse representations of the target dataset when compared against the baselines.

Architecture Input Clean-FID [10] Clean-KID [10] CSIDm

StyleGAN2-ADA [11] Gaussian 2.70†
0.906× 10

−3 2.65

StyleGAN3-T [12] Gaussian 2.79†
1.031× 10

−3 2.95

StyleGAN-XL [36] Gaussian 2.02
†

0.287× 10
−3 3.94

Spider StyleGAN2-ADA (Ours) TinyImageNet 2.45 0.915× 10
−3

1.99

Spider StyleGAN2-ADA (Ours) AFHQ-Dogs 3.07 0.795× 10
−3 2.55

Spider StyleGAN3-T (Ours) TinyImageNet 2.86 1.162× 10
−3 3.25
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(a) Baseline sampling (b) Sampling with the truncation trick [30]
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Figure 29. Images generated by cascaded Spider GAN variants when the Gaussian samples provided to the input-stage are (a) retained

as-is; and (b) resampled when lying outside of the 2σ interval [−2, 2] (the truncation trick [30]). Images generated using truncated input

samples are of a superior visual quality. Baseline sampling results in distorted faces in the case of FFHQ and Ukiyo-E faces datasets, while

on MetFaces, poor quality samples resulted in alien patterns.
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Figure 30. Ukiyo-E images generated by the Spider variant of StyleGAN2, trained on AFHQ-Dogs input. Since the AGFQ-Dogs dataset has

relatively lower diversity than the target, the generated Ukiyo-E samples are visually sup-par compared to the performance of the baseline

StyleGAN2-ADA.
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Figure 31. Ukiyo-E face images generated by the Spider variant of StyleGAN2, trained on Tiny-ImageNet input. The Spider variant achieves

state-of-the-art FID of 20.44, compared to 26.74 of the baseline StyleGAN2-ADA (lower FID is better).
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Figure 32. A comparison of MetFaces images generated by the baseline and Spider GAN variants. Spider StyleGAN2 with the TIny-

ImageNet (TIN) input data outperforms all other variants, generating sharper and more diverse images, achieving a state-of-the-art FID of

15.60 as opposed to an FID of 18.75 achieved by StyleGAN2-ADA.
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Figure 33. Representative MetFaces images generated by the Spider variant of StyleGAN2, trained on AFHQ-Dogs input. The model

achieved an FID score of 29.82, which is lower than the FID of the StyleGAN2-ADA baseline (18.75). This is expected, as the AFHQ-Dogs

is not a friendly neighbor of the target dataset.
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Figure 34. Sample images generated by the Spider variant of StyleGAN2, trained on Tiny-ImageNet input and MetFaces as output. The

Spider StyleGAN variant achieves state-of-the-art FID of 15.60, against an FID of 18.75 achieved by the StyleGAN2-ADA baseline.
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Figure 35. A comparison of FFHQ ages generated by the baseline and Spider GAN variants trained with AFHQ-Dogs and Tiny-ImageNet

(TIN) inputs. Spider StyleGAN2-ADA with the Tiny-ImageNet input performs on par with the StyelGAN-XL baseline (FID of 2.45 for the

proposed approach versus FID of 2.07 for the baseline), with a mere one-third of the network complexity.
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Figure 36. FFHQ images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from

the StyleGAN2-ADA model trained on AFHQ-Dogs. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on

32× 32 Tiny-ImageNet images. The converged model achieved an FID of 3.07 as opposed to 2.70 of the baseline model. The lower FID

can be attributed to the choice of a poor neighbor of the target dataset.
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Figure 37. FFHQ images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from the

StyleGAN2-ADA model trained on AFHQ-Dogs images. The model achieves an FID of 2.45, superior to the baseline StyleGAN2-ADA,

Polarity-StyleGAN2 and MaGNET-StyleGAN2 (with FID scores of 2.70, 2.57 and 2.66, respectively).
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Figure 38. FFHQ images generated by the Spider variant of StyleGAN3-T, trained on Tiny-ImageNet dataset. The model achieved an FID of

2.86.
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Figure 39. AFHQ-Cat images generated by the Spider variant of StyleGAN2-ADA, trained on a model incorporating weight transfer from

the StyleGAN2-ADA model trained on AFHQ-Dogs. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on

32× 32 Tiny-ImageNet images. The converged model achieves an FID of 3.86 in one-fifth of he training iterations required by the baseline.
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Figure 40. AFHQ-Cat images generated by the Spider variant of StyleGAN3-T from scratch. The input samples are drawn from a

StyleGAN3-T model model pre-trained on 32× 32 AFHQ-Dog images. The converged model achieves an FID of 6.29, which is on par with

the baselines, in a mere one-fifth of the suggested [12] training iterations.
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Figure 41. AFHQ-Cat images generated by the Spider variant of StyleGAN3-T, trained on a model incorporating weight transfer from the

StyleGAN3-T model trained on AFHQv2-Dog. The input samples are drawn from a StyleGAN2-ADA model model pre-trained on 32× 32

Tiny-ImageNet images. The converged model achieves a state-of-the-art FID of 3.07 and KID of 0.23× 10
−3 in one-fourth of the training

iterations of baseline StyleGAN3 [12].
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Figure 42. A grid of interpolated Ukiyo-E images generated by Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Images are generated

by transforming Gaussian noise to AFHQ-Dogs images via an input-stage model, whose subsequent outputs serve as the input to Spider

StyleGAN2-ADA. The interpolation is performed in the AFHQ-Dogs space, and provided as input to Spider StyleGAN2-ADA. We observe

smooth transitions between the interpolated images, which allows for fine-grained control of the features.
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Figure 43. A grid of interpolated Ukiyo-E images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Images are generated

by transforming Gaussian noise to AFHQ-Dogs images via an input-stage model, whose subsequent outputs serve as the input Spider

StyleGAN2-ADA. In this case, the interpolation is performed in the Gaussian space and fed to the input-stage pre-trained StyleGAN. The

corresponding AFHQ-Dogs images generated are provided as input to the Spider StyleGAN2-ADA. We observe abrupt and unnatural

transitions between images. Some images also appear to be unrealistic, which is not surprising, as the interpolation of points drawn from a

Gaussian manifold have an extremely low probability of lying on the manifold.
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Figure 44. Interpolations on the MetFaces images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The inputs to

the Spider StyleGAN are linearly interpolated AFHQ-Dogs images. We observe smooth and gradual transitions between the color- and

sketch-based images generated by Spider StyleGAN, which is highly desirable for feature manipulation.
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Figure 45. Interpolated MetFaces images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The interpolation is carried

out in the Gaussian fed to the pre-trained input-stage StyleGAN. The corresponding AFHQ-Dogs images generated are given as input to

Spider StyleGAN2-ADA. We observe unnatural and discontinuous transitions between the color and sketch images which can be attributed

to the disconnected manifold structure of the dataset.
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Figure 46. Interpolations on the FFHQ images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. The inputs to the Spider

StyleGAN are linear interpolates computed on the AFHQ-Dogs images. We observe that the proposed Spider variant generates smooth and

gradual transitions with fine-grained facial features allowing for superior control of the image generation.
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Figure 47. Interpolated FFHQ images generated by the Spider StyleGAN2-ADA, trained on AFHQ-Dogs. Interpolation is performed in the

Gaussian space of the input-stage StyleGAN, which generate a set of AFHQ-Dogs images, which in turn serve as the input to the Spider

StyleGAN2-ADA. We observe discontinuous transitions in the hair, color, and other features of the generated images. Some images are also

noisy, as they correspond to inputs drawn from outside of the training manifold.
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E. GitHub Repository and Code Release

The codebase for implementing Spider GAN, Spider PGGAN, Spider StyleGAN and SID has been included as part of the

Supplementary. The baseline non-parametric prior [16] was implemented using the publicly released .mat file. PGGAN [27]

and StyleGAN2 and StyleGAN3 were implemented using publicly available GitHub repositories, with modification included

to implement their respective Spider variants.

The implementation for CSIDm and SID are based on the Inception features provided by the Clean-FID [10] library. In

order to maintain uniformity, SID can also be computed by providing the path to existing source and target image folders, akin

to FID and KID.

An implementation of SID atop the Clean-FID [10] backbone, with associated animations of the experiments presented

in this manuscript are available at https://github.com/DarthSid95/clean-sid. The TensorFlow-based source

code for Spider GANs built atop the DCGAN architecture, and associated pre-trained models are available at https:

//github.com/DarthSid95/SpiderDCGAN. The PyTorch-based source code for implementing the Spider variants

of PGGAN, StyleGAN2, StyleGAN2-ADA and StyleGAN3, with the corresponding pre-trained models are available at

https://github.com/DarthSid95/SpiderStyleGAN. Images in the Main Manuscript and Supplementary

Document have been compressed to meet the file-size limits of the venue. The GitHub repositories also include the full-

resolution versions of the images provided in the Main Manuscript and Supporting Document.
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