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ABSTRACT

Score-based generative models have emerged as the state-
of-the-art in generative modeling. In this paper, we intro-
duce a novel sampling scheme that can be combined with
pre-trained score-based diffusion models to speed up sam-
pling by a factor of two to five in terms of the number of
function evaluations (NFEs) with a superior Fréchet Incep-
tion distance (FID), compared to Annealed Langevin dynam-
ics in noise-conditional score network (NCSN) and improved
noise-conditional score network (NCSN++). The proposed
sampling algorithm is inspired by momentum-based acceler-
ated gradient descent used in convex optimization techniques.
We validate the sampling efficiency of the proposed algorithm
in terms of FID on CIFAR-10 and CelebA datasets.

Index Terms— Score-based models, generative Al, deep
generative models, diffusion models, momentum.

1. INTRODUCTION

Recently, there has been a surge of interest in generative mod-
els within the field of deep learning and artificial intelligence.
Generative models are trained to output samples from an un-
known, underlying distribution of a dataset, given access to a
finite number of samples. Generative models have demon-
strated remarkable capabilities in a variety of applications,
such as image synthesis, text generation, audio synthesis, mu-
sic synthesis, image reconstruction and data augmentation.
Song and Ermon [1] introduced score-based generative
models, wherein the goal is to learn the gradient of the score,
which is the log-probability density function (p.d.f.) of the
data. Since one does not have access to the p.d.f. in closed-
form, the score is typically approximated using deep neural
networks. Score-based models have achieved state-of-the-art
performance on tasks such as image generation [1-6], au-
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dio synthesis [7-9], music generation [10] and image restora-
tion [11-13] among others. In score-based models, unlike
variational autoencoders (VAEs) [14] and generative adver-
sarial networks (GANSs) [15], the sampling process is iterative
and is implemented using Langevin dynamics [16]. While
these models achieve state-of-the-art Fréchet Inception dis-
tance (FID) [17], a major shortcoming is the relatively longer
sampling time.

1.1. Related Work

Song et al. [2] improved training and sampling by tuning the
noise-scales and improved sampling stability via an exponen-
tial moving-average for the weights. Song et al. [3] proposed
a unified framework for analyzing diffusion models and
score-based models using stochastic differential equations
(SDEs). Jolicoeur-Martineau et al. [18] proposed an adaptive
stochastic differential equation (SDE) solver as a fast sampler
without any drop in the quality of generated images. Their
approach reduces computational requirement by a factor of
2% to 5x. For a fixed number of function evaluations (NFEs),
their sampler results in a lower FID for the generated images.
Ma et al. [19] proposed a matrix preconditioning method to
accelerate sampling motivated by the intuition to make the
rate of curvature similar along all the directions. They employ
the Metropolis adjusted Langevin sampling algorithm [20]
and achieve a 29x speedup in sampling for high-resolution
images. Denoising diffusion implicit models (DDIMs) [21]
proposed a generalization involving non-Markovian diffusion
processes, achieving a 10x to 50x speedup over Denoising
Diffusion Probabilistic Models [4]. Consistency models [22]
are a novel class of generative models that support fast one-
step and multi-step sampling for generation of high quality
samples, and are typically trained by distilling pre-trained
diffusion models. They outperform existing non-adversarial
generative models on CIFAR-10 [23], ImageNet [24] and
LSUN [25] datasets. Karras et al. [26] proposed a unified
framework for implementing all score-based generative mod-
els by focusing on the design space of generative models.
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Fig. 1: (Colour online 8) A comparison of FID versus
the number of function evaluations (NFEs) for the proposed
MILD vis-a-vis the baseline ALD samplers, for varying num-
ber of sampling steps 7. MILD sampler with T' = 1 reduces
the NFEs required to achieve a given FID by 2x to 5Xx.

This allows for a separation of training and sampling tech-
niques to optimize score-based generative models. Recent
works that tackle the problem of optimizing the sampler for
diffusion models [21,27-31] are motivated by the theory of
numerical methods applied to stochastic differential equations
(SDEs).

1.2. Our Contributions

In this paper, we focus on score-based generative mod-
els, such as NCSN [1] and NCSN++ [2]. We propose a
modified sampling algorithm, entitled momentum-imbued
Langevin dynamics (MILD), to generate samples from pre-
trained score-based generative models such as NCSN [1]
and NCSN++ [2]. It can be interpreted as a modification to
the unadjusted Langevin algorithm (ULA) [32] for sampling
from high-dimensional image distributions with the addition
of a momentum update to accelerate sampling when used
with the pre-trained NCSN and NCSN++ models. Exper-
imental results show that MILD accelerates sampling for
pre-trained score-based generative models by a factor of two
to five. Figure 1 gives a flavor of the speed-up obtained using
the proposed MILD accelerator. More details will be pre-
sented in Sections 2 and 3. MILD is lightweight and can be
integrated with existing/pre-trained score-based generative
models to speed up sampling with improvement in the quality
of generated images compared with the baseline ALD. We
consider both NCSN and NCSN++ models and present exper-
imental results on CIFAR-10, CelebA, and LSUN-Bedroom
datasets. The closest approach to ours is that of Dockhorn et
al. [33], who proposed a critically-damped Langevin dynam-
ics (CLD) algorithm, wherein the training and sampling is
carried out in a joint extended space involving both position

and velocity coordinates. While CLD is efficient in terms of
sampling speed and generated sample quality, the approach
involves sampling using an SDE integrator and training in
a joint extended space. On the other hand, MILD does not
require a change in the training loss, and can be used as an
add-on to accelerate sampling for pre-trained score-based
generative models.

2. SCORE-BASED GENERATIVE MODELLING

Score-based generative models are starkly different from tra-
ditional approaches to generative modeling such as the well-
established GANs [15] and VAEs [14], where the generation
is guided by the minimization of the Jensen-Shannon diver-
gence and the maximization of the evidence lower bound
(ELBO), respectively. In contrast, score-based generative
models are trained to learn the gradient of the log of the
density function directly. This is achieved by minimizing
the Fisher divergence Dg(p||q) between the unknown density
p(x) and the learnt density ¢(x) [34], defined as follows:

2
p(@) ‘ dz. (1)

q(x)

Instead of modelling the density function directly, we model
the score function of the density g(x), which is defined as
se(x) = Vzlng(x). Directly minimizing the divergence
in (1) is not possible since one does not have access to the
ground-truth score V Inp(x). This can be circumvented
by using an equivalent loss, namely, denoising score match-
ing [35,36] or sliced score matching [37]. In denoising score
matching (DSM), the original dataset is perturbed by noise
of various scales and the score-based model is trained to
learn the score of the noise-perturbed data distribution for
each noise scale. The noise is typically isotropic Gaussian,
and there are L levels of noise with decreasing standard
deviations 01 > o9 > ... > or. The noise perturbed dis-
tribution corresponding to the i™ noise level is given by the
convolution py,(z) = [p(y)N(z;y,o?l)dy, where p(y)
denotes the underlying true, but unknown, distribution, and
N (x;y,021) is a Gaussian with mean y and standard devia-
tion o; in all directions. In NCSN, the score network sg(x, 7)
is trained to estimate the score of the noise-perturbed distri-
bution Vg Inp,, (x) for each i € {1,..., L}. In this setting,
with A(i) £ o2, the loss function becomes a weighted sum of
Fisher divergences for all noise-scales given by

De(pllg) = / p(x)

‘Vz In

L
L(0) =) A)E,, @) [lIse(@,i) = Valnpy,(a)]3] -

=1

Once the model is trained, new samples are generated from
the model using a modified version of the unadjusted Langevin
algorithm [32], referred to as the annealed Langevin dynam-
ics (ALD), since the noise-scale o; anneals gradually as @
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Fig. 2: (Colour online &) Schematic of the proposed accelerated Momentum-Imbued Langevin Dynamics (MILD) sampler.

decreases. In NCSN++ [2], practical recommendations are
given to improve the quality of the generated images by intro-
ducing modifications to the noise-scales, model architectures
and employing an exponential moving-average of the neural
network parameters.

2.1. Connection between Optimization and Sampling

Consider the minimization of a differentiable function f using
the gradient-descent update:

Liy1 = Ty — Oltvmf(il?t)~ 2

Assuming an energy-based model, i.e., p(x) = exp(—f(x))/Z,

the Langevin Monte Carlo (LMC) sampling step is given by

$t+1 = Tt + Qi Vm lnp(:l:t) +\/ 20475 Zt (3)
———
=_vrf(wt)

Comparing Egs. 2 and 3, we observe that LMC sampling can
be interpreted as a noisy gradient-ascent on the log-likelihood
with progressively smaller noise as the iterations progress.
Leveraging this link between sampling and optimization, we
posit that acceleration schemes used in the optimization lit-
erature can be used to advantage in sampling as well. In
Fig. 3, the parallels between optimization and sampling are

Langevin Monte Carlo Sampling

exp (—f(x))
Z

Tip1 = T + Vg logp(e) + V2042

Gradient Descent Optimization
Sample from p(x) =

mmin f(x)

Typ1 =X — Vg f(2r)

Ty = — Ve f(x) + V22

Fig. 3: (Colour online &) Comparison between minimization
of a convex function f using the gradient descent algorithm
and sampling from a log-concave p.d.f. p using Langevin
Monte Carlo algorithm.

Algorithm 1: Faster generative sampling with
momentum-imbued Langevin dynamics (MILD).

Input: {o;}£ | &, T, 7, score-network sq
1 Imitialize: xo ~ N(0,1), vy =0
2 fori=1t0 Ldo

g0

3 o = 3

oL
4 fort =0toT — 1do
5 Draw z; ~ N(0,1)
6 Vg1 = YU + s (T + Yy, 04)
7 Tip1 = Ty + Vi1 + V2042
8 o < TT
9 Vg < U

10 if denoise x then
1 L return z + 0% s¢(TT, 0T)

12 else
13 L return &

shown through an illustration for a quadratic function f and
a log-concave density p. Our acceleration scheme for sam-
pling is inspired by Nesterov’s momentum [38]. For convex,
B-smooth functions, Nesterov’s technique [38] accelerates the
convergence rate of standard gradient-descent optimization of
convex costs from linear to quadratic. The accelerated sam-
pling updates are given by

Vip1 = Y0 — aVag f(xs + yvy), “4)
Ty = Ty + Vi1 + V 2z, &)

where z; ~ N(0,I). We observed through experimentation
that keeping the value of the parameter v small and constant
across iterations yielded better FID. More details will be pre-
sented in a journal version. Intuitively, momentum provides
an advantage over traditional gradient-descent by introducing
a moving-average of the past gradients, accelerating and sta-
bilizing the optimization. The resulting momentum-imbued
Langevin dynamics algorithm is named MILD (cf. Fig. 2 for
a schematic, and Algorithm 1 for the listing).
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Fig. 4: (Colour online &) Samples generated by NCSN++ [2] with MILD acceleration.

Table 1: FID values for samples generated using an-
nealed Langevin dynamics (ALD) and momentum-imbued
Langevin dynamics (MILD) for the pre-trained NCSN [1] and
NCSN++ [2] models. L denotes the number of noise levels,
and T denotes the number of sampling steps at each noise-
scale. L x T is the total number of sampling steps.

NCSN Dataset L T FID

ALD CIFAR-10 | 10 | 100 | 25.32
(32 x 32)

10 | 100 | 46.98

10 50 | 28.23

MILD CIFAR-10 | 10 40 | 29.78

(Ours) (32 x 32) 10 30 | 40.35

10 20 | 41.18

ALD CelebA 10 | 100 | 75.78
(32 x 32)

10 | 100 | 81.85

10 50 | 70.97

MILD CelebA 10 40 | 70.48

(Ours) (32 x 32) 10 30 | 71.14

10 20 | 73.25

NCSN++ Dataset L T FID

ALD CIFAR-10 | 232 5 12.9
(32 x 32)

232 5 12.97

232 4 12.43

MILD CIFAR-10 | 232 3 12.55

(Ours) (32 x 32) | 232 2 13.58

232 1 15.5

ALD CelebA 500 5 11.1
(64 x 64)

500 5 10.93

500 4 9.91

MILD CelebA 500 3 9.37

(Ours) (64 x 64) | 500 2 8.59

500 1 8.98

3. EXPERIMENTAL RESULTS

MILD can be used with any pre-trained score network. To
evaluate the sampling efficiency of MILD, we conducted
a comprehensive set of experiments aimed at assessing the
speedup obtained with MILD sampling algorithm for two
prominent score-based generative models, namely, NCSN
and NCSN++, which employ annealed Langevin dynamics
(ALD) [1, 2] for sampling. Consistent with the baseline ap-
proaches [1, 2], we report FID on CIFAR-10 and CelebA
datasets. L is the number of noise levels used during sam-
pling and T' is the number of ALD updates done. We ablate on
T with MILD and calculate the Fréchet Inception Distance
(FID) [17] and the number of function evaluations (NFEs)
L x T. Table 1 reports the FID achieved while sampling with
ALD and MILD. Figure 1 shows the FID as a function of the
NFEs. The results show that MILD achieves FIDs compara-
ble to lower than the baseline ALD algorithm, in two-to-five
fold fewer function evaluations. Fig. 4 shows the images gen-
erated using the NCSN++ model with MILD acceleration on
CIFAR-10 (32 x 32), CelebA (64 x 64), and LSUN-bedrooms
(128 x 128) datasets '

4. CONCLUSIONS

Incorporating momentum clearly accelerates the sampling
speed as well as improves the quality of the generated sam-
ples (as measured by FID). MILD achieves lower FID than
ALD, which is the sampler used in NCSN and NCSN++
across CIFAR-10 and CelebA datasets with fewer sampling
steps. For high-resolution images, MILD generates con-
sistently higher quality samples than ALD, which is also
consistent with that of Jolicoeur-Martineau et al. [18]. Ob-
taining theoretical guarantees on the rate of convergence and
exploring alternative acceleration schemes for faster sampling
are potential directions for future research in this area.

Source code to implement MILD is accessible at https://github.
com/mani-312/mild

6638

Authorized licensed use limited to: MICROSOFT. Downloaded on December 24,2024 at 17:19:00 UTC from IEEE Xplore. Restrictions apply.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

5. REFERENCES

Y. Song and S. Ermon, “Generative modeling by estimating
gradients of the data distribution,” in Adv. Neural Inf. Process.
Syst., 2019.

Y. Song and S. Ermon, “Improved techniques for training
score-based generative models,” in Adv. Neural Inf. Process.
Syst., 2020.

Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Er-
mon, and B. Poole, “Score-based generative modeling through
stochastic differential equations,” in Intl. Conf. on Learning
Representations, 2021.

J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilis-
tic models,” in Adv. Neural Inf. Process. Syst., 2020.

P. Dhariwal and A. Q. Nichol, “Diffusion models beat GANs
on image synthesis,” in Adv. Neural Inf. Process. Syst., 2021.

J. Ho, C. Saharia, W. Chan, D. J. Fleet, M. Norouzi, and T. Sali-
mans, “Cascaded diffusion models for high fidelity image gen-
eration,” J. Machine Learning Research, 2022.

N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and
W. Chan, “Wavegrad: Estimating gradients for waveform gen-
eration,” in Intl. Conf. on Learning Representations, 2021.

Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Dif-
fwave: A versatile diffusion model for audio synthesis,” in Intl.
Conf. on Learning Representations, 2021.

S. Pascual, G. Bhattacharya, C. Yeh, J. Pons, and J. Serra,
“Full-band general audio synthesis with score-based diffu-
sion,” in IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2023.

G. Mittal, J. Engel, C. Hawthorne, and I. Simon, “Symbolic
music generation with diffusion models,” in Proceedings of
the 22nd International Society for Music Information Retrieval
Conference, 2021.

B. Kawar, G. Vaksman, and M. Elad, “SNIPS: Solving noisy
inverse problems stochastically,” Adv. Neural Inf. Process.
Syst., vol. 34, 2021.

B. Kawar, M. Elad, S. Ermon, and J. Song, “Denoising diffu-
sion restoration models,” in ICLR Workshop on Deep Genera-
tive Models for Highly Structured Data, 2022.

B. Kawar, J. Song, S. Ermon, and M. Elad, “JPEG Artifact
Correction using Denoising Diffusion Restoration Models,” in
NeurlPS Workshop on Score-Based Methods, 2022.

D. P. Kingma and M. Welling, “Auto-Encoding Variational
Bayes,” in Intl. Conf. on Learning Representations, 2014.

L. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. C. Courville, and Y. Bengio, “Generative
Adversarial Nets,” in Adv. Neural Inf. Process. Syst. 27.2014.

G. Parisi, “Correlation functions and computer simulations,”
Nuclear Physics B, vol. 180, no. 3, 1981.

M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and
S. Hochreiter, “GANs trained by a two time-scale update rule
converge to a local nash equilibrium,” in Adv. Neural Inf. Pro-
cess. Syst., 2017, vol. 30.

A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman,
and I. Mitliagkas, “Gotta go fast when generating data with
score-based models,” arxiv:2105.14080, 2021.

6639

[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

(33]

(34]

[35]

(36]

[37]

[38]

H. Ma, L. Zhang, X. Zhu, and J. Feng, “Accelerating score-
based generative models with preconditioned diffusion sam-
pling,” in 17th European Conf. on Comp. Vis., 2022.

T. Xifara, C. Sherlock, S. Livingstone, S. Byrne, and M. Giro-
lami, “Langevin diffusions and the Metropolis-adjusted
Langevin algorithm,” Statistics Probability Letters, 2014.

J. Song, C. Meng, and S. Ermon, “Denoising diffusion implicit
models,” in Intl. Conf. on Learning Representations, 2021.

Y. Song, P. Dhariwal, M. Chen, and I. Sutskever, “Consistency
models,” in Intl. Conf. on Machine Learning, 2023.

A. Krizhevsky, “Learning multiple layers of features from tiny
images,” Master’s thesis, University of Toronto, 2009.

J. Deng, W. Dong, R. Socher, L. Li, L. Kai, and Li F,, “Im-
agenet: A large-scale hierarchical image database,” in Proc.
IEEE/CVF Intl. Conf. Comput. Vis. Pattern Recognit., 2009.

F. Yu, A. Seff, Y. Zhang, S. Song, T. Funkhouser, and J. Xiao,
“LSUN: Construction of a large-scale image dataset using deep
learning with humans in the loop,” arXiv:1506.03365, 2015.

T. Karras, M. Aittala, T. Aila, and S. Laine, “Elucidating the
design space of diffusion-based generative models,” in Adv.
Neural Inf. Process. Syst., 2022.

C. Lu, Y. Zhou, F. Bao, J. Chen, C. Li, and J. Zhu, “DPM-
solver: A fast ODE solver for diffusion probabilistic model
sampling in around 10 steps,” in Adv. Neural Inf. Process. Syst.,
2022.

C. Lu, Y. Zhou, . Bao, J. Chen, C. Li, and J. Zhu, “DPM-
Solver++: Fast solver for guided sampling of diffusion proba-
bilistic models,” arxiv:2211.01095, 2023.

Q. Zhang and Y. Chen, “Fast sampling of diffusion models
with exponential integrator,” in Intl. Conf. on Learning Repre-
sentations, 2023.

Q. Zhang, J. Song, and Y. Chen, “Improved order analysis
and design of exponential integrator for diffusion models sam-
pling,” arxiv:2308.02157, 2023.

L. Liu, Y. Ren, Z. Lin, and Z. Zhao, “Pseudo numerical meth-
ods for diffusion models on manifolds,” in Intl. Conf. on Learn-
ing Representations, 2022.

A. Wibisono, “Sampling as optimization in the space of mea-
sures: The Langevin dynamics as a composite optimization
problem,” in Proceedings of the 31st Conference On Learn-
ing Theory, 2018.

T. Dockhorn, A. Vahdat, and K. Kreis, “Score-Based Genera-
tive Modeling with Critically-Damped Langevin Diffusion,” in
Intl. Conf. on Learning Representations, 2022.

S. Lyu, “Interpretation and generalization of score matching,”
in Proc. of the 25™ Conf. on Uncertainty Artif. Intell., 2009.

P. Vincent, “A connection between score matching and denois-
ing autoencoders,” Neural Computation, vol. 23, no. 7, 2011.
A. Hyvirinen, “Estimation of non-normalized statistical mod-
els by score matching,” J. Mach. Learn. Res., vol. 6, 2005.

Y. Song, S. Garg, J. Shi, and S. Ermon, “Sliced score matching:
A scalable approach to density and score estimation,” in Proc.
of the 35™ Conf. on Uncertainty Artif. Intell., 2019.

Y. E. Nesterov, “A method of solving a convex programming
problem with convergence rate 0 zy.” in Doklady Akademii
Nauk. Russian Academy of Sciences, 1983, vol. 269.

Authorized licensed use limited to: MICROSOFT. Downloaded on December 24,2024 at 17:19:00 UTC from IEEE Xplore. Restrictions apply.



