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A Proofs of Theorems
We now present the proofs of the various theorems presented in the main manuscript. We recall the de!nitions presented in Section 5.
The data can be represented as query-item pairs, given by s = (x ,z). A key design choice is on forming the dataset S = {s}. The simplest
formulation is that of selecting N queries and items randomly from the underlying distributions X andZ respectively, and pairing them, to
form the dataset S̃ = {si = (xi ,zi ) | i = 1, 2, . . .N }. Alternatively, given X and Z, de!ned as X = {xi }Ni=1, and Zs = {zω }

L
ω=1 respectively,

we can consider all possible pairing of queries and items, giving us S = {(xi ,zω ) | i = 1, 2, . . .N , ω = 1, 2, . . . L}, i.e., s is drawn from the
Cartesian product space S = X →Z. Note that S can be indexed as j = L(i ↑ 1) + ω, j = 1, 2, . . .M = NL. The extreme (meta) classi!cation
problem is now one of binary classi!cation, with targets ω drawn from the space Y , that satisfy ωj = 1 if item zω is positively associated
with the query xi . In the XC setting, it is well known that negatively associated pairs are signi!cantly more likely to occur than positive
ones. We assume that in any set S, we have at most ε positively associated pairs. Let maxx ↓E (X) ↔x ↔2 ↗ B and maxw ↓W ↔w ↔2 ↗W be the
bounds on the norm of the encoder representations of the queries and the learnt classi!ers, respectively.

Before we proceed with the proofs, we recall a few key de!nitions.
Empirical and True Risk: Given a function f (·) drawn from a function space F , and a loss function, the empirical risk over S, and the
true risk, are given by

R̂ =
1
M

M∑

j=1
sj↘S

loss( f (sj ),ωj ) and R = Es↘X→Z [loss( f (s ),ω)] , respectively.

Rademacher Complexity [32]: Given a function f drawn from the function class F , the emprical Rademacher complexity de!ned over
the set S, and the Rademacher complexity over all sets of sizeM are given by:

R̂S (F ) =
1
M
Eω


sup
f ↓F

M∑

j=1
ϑj f (sj )


, and RM (F ) = ES

[
R̂S (F )

]
, (8)

respectively, where ω = (ϑ1,ϑ2, . . . ,ϑM ), whose entries are independent random variables drawn from the Rademacher distribution i.e.
Pr(ϑj = +1) = Pr(ϑj = ↑1) = 1/2, ≃j.
McDiarmid Inequality [11]: McDiarmid’s inequality is a concentration inequality to bound the deviation of the sampled value from the
expected value. We consider an extension of the standard inequality, to the case where the function under consideration ω does not strictly
satisfy the bounded di"erences property, but large di"erences remain very rare.

Let ω : S1 →S2 → · · ·→SM ⇐ R be a function acting on the dataset S, with sj ↓ Sj and S⇒ ⇑ S1 →S2 → · · ·→SM be a subset of its domain
and let c1, c2, . . . , cn ⇓ 0 be constants such that all pairs (s1, . . . , sM ) ↓ S⇒ and (s ⇒1, . . . , s

⇒
n ) ↓ S

⇒, satisfy the bounded di"erence property:

)))ω(s1, . . . , sM ) ↑ ω(s ⇒1, . . . , s
⇒

M )))) ↗
∑

j :sj!s ⇒j

c j .

All datasets drawn from S⇒ can be viewed as good sets that satisfy bounded di"erence. Then, given a random dataset S, with probability
q = 1 ↑ Pr(S ↓ S⇒) (which is the probability of drawing a bad set), the following holds:

Pr ())ω(S) ↑ ES [ω(S)])) ⇓ ϖ ) ↗ 2q + 2 exp

↑

2
(
max

{
0, ϖ ↑ q

∑
j c j

})2
∑
j c

2
j


.

Hoe!ding’s Inequality [32]: The Hoe"ding’s inequality is a special case of the McDiarmid inequality. Let Y1,Y2, . . .YM beM independent
Bernoulli-distributed random variables. Let the sum be denoted as SM = Y1 + Y2 + . . . + YM . Then, ≃t > 0, we have

Pr (SM ↑ EY [SM ] ⇓ t ) ↗ exp
{
↑
2t2

M

}
.

Proof of Theorem 1: Consider the empirical and true risk de!ned in Equation 8. The proof follows by deriving the generalization bound
using the McDiarmid inequality, followed by using the Hoe"ding inequality to bound the probability q. Without loss of generality, we
rede!ne the loss to have the target labels ωj ↓ {↑1, 1}, giving rise to the following form of the loss:

ϱ(s,ω) = loss ( f (s ),ω) =
( 1 ↑ ω

2

)
f (s ) ↑C

( 1 + ω
2

)
f (s ). (9)

Let ω(S) be de!ned as follows

ω(S) = sup
f ↓F


Es [ϱ(s,ω)] ↑

1
M

M∑

j=1
ϱ(sj ,ωj )


= sup

f ↓F

{
E [ϱ(s,ω)] ↑ Ê

[
ϱ(sj ,ωj )

]}
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The subsequent steps are consistent with those in deriving the Rademacher complexity in the standard setting [32], but modi!ed to
accommodate the extension of the McDiarmid inequality. Let S and S⇒ be two sample sets, di"ering only in element sk . Then, we have:

ω(S) ↑ ES [ω(S)] ↗
1
M

sup
f ↓F

{
ϱ(sk ,ωk ) ↑ ϱ

⇒(sk ,ωk )
}
↗ c j

if S and S⇒ are drawn from the good set S̃ (which we discuss shortly), then, we have c j = 1
M , ≃j , and McDiarmid’s inequality can be applied

to ω(S) to obtain the following, for ϖ > q:

Pr ())ω(S) ↑ ES [ω(S)])) ⇓ ϖ ) ↗ 2q + 2 exp

↑

2
(
max

{
0, ϖ ↑ q

∑
j c j

})2
∑
j c

2
j


= 2q + 2 exp

{
↑2M (max

{
0, ϖ ↑ q

}
)2
}

= 2q + 2 exp
{
↑2M (ϖ ↑ q)2

}
︸︷︷︸

ω

Solving for ϖ on the right hand side, we obtain:

ς = 2q + 2 exp
{
↑2M (ϖ ↑ q)2

}

⇔ 0 = ϖ2 + (↑2q)ϖ +
(
q2 +

1
2M

ln
(

2
ς ↑ 2q



⇔ ϖ = q +


ln
(

2
ω↑2q

)

2M
,

for ς ↓ (2q, 1). Substituting the above into McDiarmid’s inequality, we obtain, with probability 1 ↑ ς ,

ω(S) ↗ ES [ω(S)] +


q +


ln
(

2
ω↑2q

)

2M



.

It is straightforward to derive the bound ES [ω(S)] ↗ 2RM (loss ↖ F ) [32]. Similarly, by applying the McDiarmid inequality to R, we get:

RM (loss ↖ F ) ↗ R̂S (loss ↖ F ) +


q +


ln
(

2
ω↑2q

)

2M



.

Further, for the given form of the loss, we have the following result:

R̂S (loss ↖ F ) =
1
M
Eω


sup
f ↓F

M∑

j=1
ϑj (loss ↖ f ) (sj )


=

1
M
Eω


sup
f ↓F

M∑

j=1
ϑj

(( 1 ↑ ωj
2


f (sj ) ↑C

( 1 + ωj
2


f (sj )


=

1
2M
Eω


sup
f ↓F

M∑

j=1
ϑj f (sj ) (1 ↑C ) ↑ ϑjωj f (sj ) (1 +C )


Since ϑj and ↑ϑjωj are distributed identically, we have:

R̂S (loss ↖ F ) =
1
2
Eω


2
1
M

sup
f ↓F

M∑

j=1
ϑj f (sj )


= R̂S (F )

Putting the above together, and substituting in for ω(S), we obtain

R ↗ R̂ + R̂S (F ) + 3


q +


ln
(

2
ω↑2q

)

2M



,

which completes part of the proof of Theorem 1.
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What remains, is to derive q, the probability of drawing a bad set S. A good set is one which satis!es the bounded di"erence condition.
Consider the set S = {s1, s2, . . . , sM }. Let p denote the probability that a query-item pair is positively correlated. Then, by the de!nition of
the loss in Equation 9, for positively correlated pairs, the maximum error (over all f ↓ F is W, while for negatively correlated pairs, it is
1. For c j = 1

M , we require that the sample sj is a negative pair. Let a good set S have at most ε positively associated pairs. Then, a bad set
contains at leastM ↑ε positively associated pairs. Then, q is the probability of drawing a set S with at leastM ↑ε positively associated pairs.

To derive this probability, consider indicator variables Yj = I[sj contains a positive pairing]. Let SM =
∑
j Yj denote the sum. Then, we have

EY [SM ] = pM . Applying the Hoe"ding inequality with t = M ↑ ε ↑ pM , we get:

Pr (SM ↑ EY [SM ] ⇓ t ) ↗ 2 exp
{
↑
2t2

M

}

⇔ Pr (SM ↑ pM ⇓ M ↑ ε ↑ pM ) = Pr (SM ⇓ M ↑ ε) ↗ 2 exp
{
↑
2(M ↑ ε ↑ pM )2

M

}
.

Simplifying, we get:

q = Pr (set S contains at leastM ↑ ε positively associated pairs) ↗ 2 exp
{
↑2M

(
1 ↑ p ↑

ε

M

)2}
,

which is signi!cantly smaller than 1, given largeM (which is true in the case of XC, where we have large N and L) and ε = 0, which is the
setting under which the required McDiarmid inequality is de!ned. This completes the proof of Theorem 1.

Proof of Lemma 4: We now state and discuss the proof of Lemma 4, which is an extension of Theorem 3 from Awasthi et al. [4].

L!""#. (Rademacher complexity of the XC Classi"ers) (extension of Awasthi et al. [4], Theorem 3) Let F be the class of linear
classi!ers de!ned over the seen-item set Zs in the classical XC setting (cf. Section 3.1), i.e., F = {↙x ,wω∝ | ω = 1, 2, . . . ,L}, where x ↓ X. Then,
the Rademacher complexity of F can be bounded as follows:

R̂S (F ) ↗
LBW
′
N
,

where |X| = N is the Cardinality of the training set.

P$%%&. Let Fω = {↙x ,wω |↔ |wω ↔2 ↗W }. Awasthi et al. [4] showed that R̂S (Fω ) ↗
W

N
↔X↔F , where X is a matrix formed with the elements

of X. For bounded data, maxx ↓E (X) ↔x ↔2 ↗ B, we have R̂S (Fω ) ↗
WB
′
N
. Given F with L classi!ers, the Rademacher complexity is bounded

by R̂S (Fω ) ↗
LBW
′
N

. ↭

Proof of Lemma 2 and Corollary 3: We now derive the bound on the Rademacher complexity of the IRENE meta-classi!er generator.
Recall the Lemma

L!""#. (Rademacher complexity of the IRENE generator) Let F be the class of functions de!ned in the IRENE algorithm, comprising
pre-determined encoder representations and classi!ers, a given classi!er selector that outputs K classi!ers, and G, the meta-classi!er generator.
Then, the Rademacher complexity of F can be bounded as follows:

R̂S (F ) ↗ O
(
B↔M↔2


d ln(K + 1)

)
,

where x ↓ Rd and M ↓ Rd→1 is the weight matrix associated with the linear layer.

P$%%&. Recall the IRENE meta-classi!er generator:

F =
{
(xi , zω ) ⇐


xi , Linear

(
SelfA!ention

(
Cl f (S (zω ))

))}
, where

F3 = Cl f (S (zω )) , F2 = SelfA!ention(F3), and F1 = Linear(F2) = MF2 + b

The proof follows by repeatedly applying Talagrand’s lemma, which states that, given an L-Lipschitz continuous function ϱ, and the function
class F , we have R̂S (ϱ ↖ F ) ↗ L R̂S (F ). Applying Talagrand’s lemma to F , we get:

R̂S (F ) ↗ B R̂S (F1) (10)

↗ B↔M↔2 R̂S (F2) (11)

↗ B↔M↔2

d ln (K + 1) R̂S (F3) (12)

↗ O

(
B↔M↔2


d ln (K + 1)

)
, (13)

where Equation 10 is a consequence of the boundedness of x , Equation 11 is obtained by considering the Lipschitz constant of a linear
transformation layer with vector-valued weights, and Equation 12 is obtained by applying the Lipschitz constant of a self-attention layer,
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derived by Vuckovic et al. [43], where in turn, d is the dimensionality of the input sequence, and K is the number of classi!ers selected by
S. We note that, while Kim et al. [27] provide a tighter bound in the context of L2 multi-head attention, their result does not hold for the
dot-product-based self-attention block considered above. Equation 13 is a consequence of considering a !xed set of classi!ersW, and a
pre-determined classi!er selector algorithm. Therefore, these blocks merely add a constant factor to the complexity to the model F class,
completing the proof of Lemma 2. ↭

The analysis can be extended to derive Corollary 3 by incorporating trainable classi!ers. Recall the statement of the Corollary:

C%$%’’#$(. (Rademacher complexity of the IRENE generator with trainable classi"er) Let F be the class of functions de!ned in
the IRENE algorithm as in Lemma 2. Let the classi!er setW be trainable over the meta-classi!er loss. Then, the Rademacher complexity of F can
be bounded as follows:

R̂S (F ) ↗ O 
B

2W


L

M
↔M↔2


d ln(K + 1) ,

where x ↓ Rd and M ↓ Rd→1 is the weight matrix associated with the linear layer.

P$%%&. The above result can be obtained by extending the proof of Lemma 2:

R̂S (F ) ↗ B↔M↔2

d ln (K + 1) R̂S (F3)

↗ O

(
B↔M↔2


d ln (K + 1) R̂S (Fclf )

)
,

where R̂S (Fclf ) can be obtained from Lemma 4, considering the dataset S with M = NL samples, and L classi!ers associated with the
observed items, which yields the desired result:

R̂S (F ) ↗ O
(
B↔M↔2


d ln (K + 1)

LW

M
↔X↔F

)

= O 



L

N
B2W ↔M↔2


d ln (K + 1) .

This completes the proof of Corollary 3. ↭

B Dataset Creation and Statistics
We evaluate IRENE on a diverse set of datasets spanning multiple applications, such as product recommendation (LF-AmazonTitles-
1.3M), category annotation (LF-Wikipedia-500K), query completion (LF-AOL-270K), and taxonomy completion (LF-WikiHierarchy-600K).
Additionally, we also evaluate IRENE on a proprietary query-to-keyword matching dataset. Table 7 describes the statistics of these datasets.

Zero-shot splits of these datasets were created in the following manner: Given the original dataset consisting of L items, and a split
fraction s ↓ (0, 1), sL items were randomly selected to form the novel item set. The remaining (1 ↑ s )L items, along with their associated
queries, form the training corpus. The novel test set was created based on connections between test queries and novel items, while for the
generalized evaluation, we refer to the data source from [9] and [7]. We !x the notation dataset-split (e.g., LF-AmazonTitles-1.3M-10 for a
10% unseen ratio split) to refer to the zero-shot version of the dataset.

Table 7: Statistics of di!erent datasets used to benchmark IRENE

No. of Queries No. of Items
Dataset Observed Novel Gen Observed Novel

KeywordPrediction-10M 220,845,427 5,022,052 5,022,052 4,999,996 5,435,443
LF-AOL-270K-10 3,689,542 68,491 519,352 245,543 27,282
LF-WikiHierarchy-550K-10 1,587,567 339,086 397,870 494,733 54,970
LF-AmazonTitles-1.3M-10 2,225,354 624,830 970,237 1,174,739 130,526
LF-Wikipedia-500K-10 1,781,890 271,620 783,743 450,963 50,107

C IRENE Implementation Details
For the classi!er selector S, based on the ablations, we set the number of neighbors K to be 3, and the number of transformer layers D
to be 1. The selector is a transformer layer with 4 heads, and is trained with a dropout value of 0.1. The latent dimension is 768. We train
the models with a batch size of 2048, and a learning rate of 0.0002 for 40 epochs. The margin is set to 0.2 on LF-Wikipedia-500K-10, 0.1 on
LF-WikiHierarchy-550K-10, and 0.3 on both LF-AmazonTitles-1.3M-10 and LF-AOL-270K-10. The source code, with additional implementation
details for IRENE, is available at https://aka.ms/irene.

https://aka.ms/irene
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Table 8: Ablation study on meta-classi"er generator G and classi"er selector S component in NGAME + IRENE on LF-
WikiHierarchy-550K-10, LF-AOL-270K-10, LF-AmazonTitles-1.3M-10, and LF-Wikipedia-500K-10 datasets for zero-shot evalu-
ation. The depth D denotes the number of layers in the transformer-based meta-classi"er generator G, while K denotes the
numbers of neighbors selected by S. We observe that smaller values for K ↓ {2, 3} and D ↓ {1, 2} yield superior results. Setting
D = 1 and K = 3 works reasonably well for diverse datasets and base encoders.

Ablation
LF-AOL-270K-10 LF-WikiHierarchy-550K-10 LF-AmazonTitles-1.3M-10 LF-Wikipedia-500K-10

P@1 P@5 R@10 P@1 P@5 R@10 P@1 P@5 R@10 P@1 P@5 R@10

IRENE (D = 1, K = 3) 36.47 11.46 59.57 69.29 38.81 80.40 31.56 16.57 38.83 44.91 15.60 67.79

G

D = 2, K = 3 35.05 11.11 57.88 70.36 39.06 80.39 31.65 16.55 38.83 48.46 16.20 69.49
D = 4, K = 3 36.56 11.48 59.51 70.71 39.11 80.27 31.42 16.44 38.61 48.47 16.10 69.14

Se
le
ct
or

(S
) D = 1, K = 1 36.02 11.28 58.53 68.98 38.56 80.11 31.24 16.38 38.45 45.87 15.83 68.59

D = 1, K = 2 36.54 11.42 59.35 69.34 38.74 80.25 31.47 16.52 38.75 45.45 15.74 68.19
D = 1, K = 6 35.66 11.30 58.95 69.99 39.12 80.79 31.68 16.65 39.17 45.24 15.44 67.23
D = 1, K = 20 36.15 11.36 59.05 69.07 38.57 79.80 31.50 16.59 39.14 45.75 15.30 66.89

D Ablations Discussions
Meta-classi"er Generator G: In the context of generating a new item representation uω , let S (zω ) denote the set of shortlisted seen items
for a given item l , with wω ↓ S (zω ). Here, wi

ω
represents the classi!er of the ith neighbor, and zω is the encoder representation of the new

item.
Summation Formulation: The summation formulation for uω is given by aggregating the encoder representation of the new item with

the classi!ers of its K neighbors as follows:
uω =

(
zω +w1

ω +w
2
ω + . . . +w

K
ω

)
(14)

Weighted Summation Formulation: In the weighted summation formulation, uω is computed by a weighted sum of the encoder
representation and the classi!ers of its neighbors, where the weights ci are learned parameters:

uω =
(
c0zω + c1w1

ω + c
2w2

ω + . . . + c
KwK

ω

)
(15)

Classi"er Selector S:We discuss detailed ablations on the classi!er selector. First, we evaluate the e"ect of changing K , the number of
observed items retrieved by S, given an ANNS-based S, on zero-shot performance. From the results presented in Table 4, we observe that
increasing K from 3 to 6 results in a performance decline of approximately 3% in P@1. Further, increasing K to 20 continues to decrease
performance. This is consistent with observations made in Section 5, wherein smaller K yield a tighter generalization bound, as derived in
Lemma 2.

Second, to demonstrate the #exibility of the IRENE framework in diverse applications wherein latency is not critical,as a proof of concept,
we consider a classi!er selector comprising a GPT-4-based re-ranking model that re-ranks the neighbour shortlist obtained from encoder
embeddings. This ablation is carried out on a subset of 104 novel items. We observe P@1 and R@10 improvements by 1%, while the
representation time increased by O (104) (cf. Table 9). Given an item, the representation time is the time for re-ranking neighbours and
subsequently, generating representations using G.

Table 9: Proof-of-concept experiments on the zero-shot performance comparison of the ANNS-based and GPT-4-based classi-
"er selectors in IRENE.When experimented on a small, but random, subset of the data, employing the GPT-4-based re-ranking
model results in 1% improvements in terms of precision of recall but the time for re-ranking neighbours and generating the
representations (Rep. time) increases by an order of four.

Classi!er Selector (S) P@1 ∞ R@10 ∞ Rep. Time (ms) ∈
ANNS-based S 67.14 85.77 0.43
GPT-4-based S 68.26 86.61 4000

E Detailed Discussion on Sponsored Search
Sponsored search is essentially a match-making system between users and advertisers with the objective of optimizing user experience,
while searching for knowledge. Sponsored search enables advertisers to reach the right set of users who might be interested in their
product/service [1]. Users encode their intent in short pieces of text called queries. Similarly, advertisers bid on short pieces of text, relevant
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Table 10: Results on 100M zero-shot keywords on the search engine.MethodMs are anonymized in-production dense retrievers.
All algorithms are provided with just the text of a keyword to get its representation

Method R@30 R@50 R@100 P@30 P@50 P@100

M1 24.74 32.82 48.46 39.10 36.60 33.25
M2 19.93 26.49 38.99 35.72 33.11 29.63
M3 19.11 25.84 39.33 31.48 28.93 25.69
M4 28.79 39.64 62.19 44.24 41.96 38.72
NGAME+IRENE 30.53 42.00 66.68 45.64 43.40 40.11

Table 11: Expert judges labeling results on KeywordPrediction-10M dataset

Method % of good quality predictions

NGAME 64.06
NGAME+IRENE 73.16

NGAME+IRENE- OneShot 77.05

to their ads, known as keywords. One critical component of the sponsored search pipeline is the task of matching user queries to these
advertiser bid keywords. Most search engines currently follow varying semantics to perform this matching (called match-types [8]). Matching
user queries to advertiser keywords is a nuanced and challenging problem as maintaining the semantics of the match-type is essential to
advertisers who often bid di"erently on di"erent match-types for the same keyword[36]. Furthermore, given the placement of this matching
task at the forefront of the Ads retrieval pipeline, any improvements in accuracy within this application can yield super-linear bene!ts for
downstream components [45]. We note that the choice of a larger truncation factor (30, 50, and 100) for the Precision metric is deliberate –
Retrieval algorithms such as IRENE precede re-ranking algorithms, necessitating the prediction of a larger candidate set for input into these
re-ranking algorithms.

Online Results IRENE underwent deployment on a prominent search engine for conducting A/B tests with live search-engine tra$c.
Throughout the live A/B test interaction on the search engine, IRENE was systematically compared against an extensive control ensemble
featuring diverse algorithms, encompassing not only DR algorithms but also prominent generative, graph-based, and IR algorithms.
Performance evaluation was based on live metrics. The !ndings revealed that IRENE led to a 4.2% increase in the click-through rate (ad clicks
obtained per unit query) and a 0.9% decrease in the quick-back rate (fraction of users quickly leaving the ad landing page due to perceived
irrelevance). These results underscore the value creation for users, indicating that IRENE e"ectively presented more relevant ads to the
audience. Furthermore, IRENE demonstrated a noteworthy 7.8% increase in keyword density (average number of keywords surviving quality
control and relevance !lters), a$rming the quality of its predictions. Additionally, IRENE achieved a click e$ciency of 150%, signifying that
for every 2% increase in ad impressions, ads selected by IRENE garnered 3% more clicks. When labeled by expert judges, IRENE was found to
increase the percentage of good keyword predictions by 9% (refer to Table 11 for details). Notably, IRENE successfully matched queries such
as "grainger" and "bitwarden" to advertiser keywords like "industrial supply" and "password manager," respectively. It is essential to highlight
that these predictions, not relying on text matching, were not replicated by any in-production algorithm. Please refer to Table 12 for more
such predictions made by IRENE but missed by the control ensemble.

Furthermore, we conduct a direct comparison of IRENE with prominent proprietary and public Dense Retrieval (DR) algorithms currently
in production. Speci!cally, we randomly sample 100 million advertiser keywords introduced into the system after the period covered by
the training-data scraping. Additionally, we select some of the top-performing dense retrieval encoders deployed in production and pit
IRENE against them in recommending keywords from this 100-million set for a sampled array of queries. For intellectual property reasons,
the names of these algorithms are anonymized, and the results are detailed in Table 10. IRENE was found to be at least 4% superior to the
next best dense retriever in terms of R@100. As novel items stream into the system, it is necessary to frequently encode these items and
include them in the ANNS index. Table 3 in the Main Manuscript shows that IRENE adds only minimal overhead on top of a language
encoder and can get the item representation in less than one millisecond. Further, the integration of updatable ANNS algorithms, such as
Fresh-DiskANN [40], can greatly reduce deployment time for novel items.

O!line Results To conduct o%ine experiments, we curated the KeywordPrediction-10M dataset by mining the logs of a commercial
search engine within a speci!c timeframe. The dataset comprised user-typed queries and the corresponding bid keywords for surfaced
advertisements, forming query-keyword training pairs. These pairs underwent basic sanity !lters based on click-through rate (CTR), clicks,
and impressions to generate the training dataset. Named KeywordPrediction-10M, the dataset encompassed approximately 5 million items
and 220 million training queries. For additional details, refer to table 7. As presented in Table 13, IRENE demonstrated a superiority of at
least 3% in Recall@100 and at least 2% in Precision@30 compared to leading Dense Retrieval (DR) algorithms NGAME and ANCE.
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Table 12: Advertiser keywords predicted by IRENE for a user query, but overlooked by the production ensemble comprising
leading dense retrieval, graph-based, XC, and generative language models. IRENE extends its capability beyond textual simi-
larity by endowing the query representation with world knowledge obtained from classi"ers of similar observed items

User Query Advertiser Keyword
best pfmea control plan software best cmms

work order app hydraulics plumbing work order software
!rewalla gold att !ber connection att ethernet network

nn2 best home fumigation companies ventura oxnard bug removal in oxnard
youtube streaming services

netbene!ts com login !delity retirement account
!nancial services crm software sap customer management software

hypokalemia high potassium in the blood
kaiser options healthinsurance

23andme genetic screening

Table 13: Results on KeywordPrediction-10M dataset.

Method R@30 R@50 R@100 P@30 P@50 P@100

Evaluation only on novel items

ANCE 31.37 42.87 72.45 76.3 68.40 56.32
NGAME 33.76 48.07 74.13 76.52 69.32 57.67
NGAME+IRENE 34.79 49.81 77.32 78.70 71.76 60.18
Semsup-XC 34.43 49.06 74.99 77.53 70.15 58.04
NGAME+IRENE-OneShot 35.87 50.95 78.46 79.75 72.84 61.20

One-shot extension We further study the extension of IRENE to scenarios involving items that have received precisely one click,
representing an exploration of IRENE’s performance at the extreme tail of observed items. In this context, IRENE leverages the revealed
query for a one-shot tail item to enhance its classi!er selector. The revealed query of the one-shot item is utilized to retrieve the nearest
classi!ers, along with the item itself. A max-voting strategy is then employed to select superior observed classi!ers compared to cases where
only the item text is used for this purpose. In comparison to SemsupXC, which re!nes its language encoder with new click data, IRENE
demonstrated a superiority of approximately 3% and 2% in Recall@100 and Precision@30, respectively. It’s noteworthy that !ne-tuning
models deployed in production, as undertaken by SemsupXC, introduces latency and complexity costs, making it less desirable. Additionally,
algorithms that !ne-tune the trained model on revealed data, such as SemsupXC, necessitate rebuilding the Approximate Nearest Neighbors
(ANNS) index from scratch. In contrast, IRENE adopts updatable ANNS algorithms, akin to many Dense Retrieval (DR) algorithms, allowing
it to leverage revealed data for improved prediction accuracy without the need to !ne-tune the base model. Hence, IRENE can make use of
the revealed data to improve the prediction accuracy without having to !ne-tune the base model. This helps to reduce latency and complexity
in an online serving infrastructure.
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Table 14: Zero Shot Accuracies of di!erent encoders when combined with IRENE. Averaged across base encoders and datasets,
IRENE improves P@1, P@5, and R@10 by 9%, 4.2%, and 10.1%, respectively.

Model LF-AOL-270K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 43.90 48.80 54.20 60.14 65.39 30.90 15.43 10.32
NGAME+IRENE 49.59 54.40 59.57 65.78 71.12 36.47 17.39 11.46
ANCE 51.81 59.63 67.84 77.38 84.78 33.43 18.10 12.52
ANCE+IRENE 53.44 60.29 67.82 76.47 83.23 36.84 18.67 12.66
MACLR 13.97 15.63 18.24 21.46 30.73 11.31 4.96 3.33
MACLR+IRENE 48.15 54.20 61.29 70.54 78.86 34.32 16.89 11.41
DPR 43.44 48.53 53.82 59.71 64.84 30.38 15.26 10.24
DPR+IRENE 50.14 55.13 60.22 66.18 71.49 36.80 17.57 11.61

TF-IDF 20.10 23.76 28.05 34.10 39.13 13.74 7.27 5.08
Zest-XML 22.73 23.49 25.91 29.28 35.1 9.34 10.21 10.79
Adam 30.49 33.96 38.53 45.81 56.31 23.02 10.80 7.22
SemSup-XC 31.50 33.8 36.31 39.93 42.92 26.27 11.16 7.19
DEXA 31.64 36.50 41.85 48.81 55.59 21.68 11.16 7.73

Model LF-WikiHierarchy-550K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 37.96 47.24 58.66 73.67 84.31 46.01 32.93 25.63
NGAME+IRENE 59.02 70.42 80.40 88.83 93.85 69.29 50.98 38.81
ANCE 35.97 44.92 56.28 72.30 85.56 43.06 30.68 23.98
ANCE+IRENE 59.35 71.50 82.10 90.70 95.29 66.54 50.52 38.87
MACLR 21.97 27.33 35.47 44.33 66.89 30.37 19.07 14.44
MACLR+IRENE 60.11 71.76 81.43 89.95 95.02 69.45 51.76 39.41
DPR 37.14 47.34 59.29 74.6 85.64 44.84 32.3 25.53
DPR+IRENE 59.42 70.45 80.01 88.72 93.91 69.65 51.23 38.78

TF-IDF 14.46 17.19 21.44 29.57 39.14 22.79 12.53 9.08
Zest-XML 14.56 16.39 17.48 29.28 22.85 13.97 13.29 12.67
Adam 29.31 36.08 45.04 58.39 71.76 38.3 25.19 19.13
SemSup-XC 40.56 44.39 46.81 48.95 50.09 57.45 36.11 24.67
DEXA 45.96 55.68 66.89 79.3 87.47 54.83 39.59 30.29

Model LF-AmazonTitles-1.3M-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 24.20 29.40 36.44 46.71 56.04 30.42 19.94 15.38
NGAME+IRENE 25.36 31.14 38.83 49.86 59.36 31.56 21.28 16.57
ANCE 18.14 23.32 30.72 43.66 57.76 22.38 15.14 12.02
ANCE+IRENE 19.55 24.93 32.72 45.48 58.56 22.75 16.21 13.02
MACLR 17.59 21.96 28.59 40.35 53.38 21.93 14.50 11.39
MACLR+IRENE 17.77 22.31 28.77 39.18 49.89 21.56 14.82 11.71
DPR 25.72 32.07 40.98 53.87 64.18 31.10 21.29 16.82
DPR+IRENE 25.40 31.60 40.31 52.63 62.18 30.49 21.04 16.62

TF-IDF 8.12 10.18 13.30 18.92 25.63 24.15 18.31 15.04
Zest-XML 5.42 6.35 6.87 7.89 8.67 5.58 4.71 4.22
SemSup-XC 11.28 14.73 20.04 29.26 38.27 11.68 8.41 6.85
DEXA 23.17 28.27 35.19 45.29 54.27 28.83 18.98 14.66

Model LF-Wikipedia-500K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 53.55 58.91 65.27 74.33 82.07 46.96 22.56 15.10
NGAME+IRENE 54.19 60.59 67.79 76.63 83.52 44.91 22.90 15.60
ANCE 40.46 47.71 58.91 75.70 87.98 30.67 16.57 11.92
ANCE+IRENE 54.84 62.59 71.59 82.91 91.16 41.59 23.02 16.05
MACLR 51.02 58.91 68.53 81.3 91.7 39.56 21.37 15.05
MACLR+IRENE 56.38 64.13 73.05 83.63 91.39 44.64 23.76 16.48
DPR 55.28 62.70 71.20 81.22 89.43 42.90 23.02 15.96
DPR+IRENE 54.55 62.08 70.50 80.45 88.03 42.19 22.83 15.87

TF-IDF 15.43 18.64 23.89 34.66 48.24 11.53 6.29 4.60
Zest-XML 6.86 9.95 14.73 21.63 25.55 2.62 2.62 2.32
SemSup-XC 50.38 53.80 57.08 60.01 61.03 46.60 21.46 13.90
DEXA 52.45 59.15 67.37 78.04 87.36 42.76 21.91 15.07
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Table 15: Generalized Zero-Shot Accuracies of di!erent encoders when combined with IRENE. Averaged across base encoders
and datasets, IRENE improves P@1, P@5, and R@10 by 14.9%, 10.4%, and 9.8%, respectively.

Model LF-AOL-270K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 24.71 30.70 38.27 47.93 55.24 20.16 13.81 10.43
NGAME+IRENE 39.31 45.15 52.30 61.42 68.87 35.11 20.43 14.43
ANCE 31.06 39.29 49.72 58.74 74.00 22.63 15.86 12.25
ANCE+IRENE 36.93 43.53 51.75 63.04 72.89 30.84 18.67 13.78
MACLR 5.87 6.55 7.52 8.62 12.36 9.26 4.22 2.83
MACLR+IRENE 32.30 37.62 44.71 55.32 65.59 30.40 17.16 12.25
DPR 24.35 30.37 37.99 44.50 54.95 19.71 13.61 10.31
DPR+IRENE 39.51 45.43 52.57 61.73 69.13 35.07 20.54 14.52
TF-IDF 5.81 7.40 9.90 14.26 19.88 6.61 4.14 3.16
Zest-XML 19.67 22.18 26.57 29.8 33.39 26.34 14.71 10.19
SemSup-XC 20.98 22.55 23.92 25.21 25.86 26.12 13.97 9.08
DEXA 31.50 38.51 46.76 52.98 62.96 25.09 16.35 12.35

Model LF-WikiHierarchy-550K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 11.24 16.70 27.08 39.85 68.14 66.19 62.64 59.25
NGAME+IRENE 15.25 23.32 40.09 72.71 87.81 91.33 89.52 86.67
ANCE 11.02 16.36 25.89 37.67 65.11 68.76 63.48 58.87
ANCE+IRENE 15.06 23.06 39.74 72.87 89.43 90.72 88.77 85.97
MACLR 7.23 9.89 14.31 19.63 36.31 59.44 47.20 39.93
MACLR+IRENE 14.48 22.33 38.37 70.92 87.89 88.81 87.19 84.60
DPR 11.08 16.45 26.73 39.47 68.76 65.19 61.53 58.14
DPR+IRENE 14.94 23.01 39.84 72.74 88.02 89.52 87.91 85.56
TF-IDF 6.67 8.36 10.88 15.56 22.16 64.50 42.24 32.1
Zest-XML 11.76 16.87 22.13 26.68 29.83 68.86 49.19 38.73
SemSup-XC 13.80 19.93 28.37 32.15 32.38 90.51 84.87 78.61
DEXA 13.74 21.12 36.17 53.96 81.81 76.18 76.94 75.38

Model LF-AmazonTitles-1.3M-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 17.45 22.58 30.25 42.72 54.81 45.14 39.15 34.72
NGAME+IRENE 17.69 23.17 31.49 45.09 58.19 47.77 42.68 38.35
ANCE 9.45 12.41 17.31 27.25 40.62 27.65 22.76 19.76
ANCE+IRENE 11.00 15.25 22.34 35.85 51.26 36.78 32.41 29.31
MACLR 9.13 11.76 15.99 24.57 36.57 27.50 21.86 18.60
MACLR+IRENE 9.57 13.05 18.85 30.13 43.61 31.49 26.92 23.97
DPR 14.85 19.48 26.93 35.42 55.12 38.18 32.89 29.20
DPR+IRENE 15.38 20.73 29.25 44.28 59.42 43.08 38.66 35.00
TF-IDF 13.71 16.47 20.40 27.08 34.81 16.33 9.83 7.35
Zest-XML 12.34 14.45 22.87 26.79 39.71 41.36 33.7 28.29
SemSup-XC 7.76 10.59 15.21 23.41 30.87 25.13 20.93 18.37
DEXA 18.08 23.27 30.89 38.70 54.21 48.19 40.45 35.47

Model LF-Wikipedia-500K-10
R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

NGAME 52.24 60.96 69.58 78.67 85.50 81.86 60.13 45.38
NGAME+IRENE 50.29 59.56 69.27 79.78 87.27 78.99 58.60 44.86
ANCE 29.66 35.51 43.39 56.22 71.99 42.91 27.54 20.92
ANCE+IRENE 43.91 52.88 63.46 76.42 86.32 71.39 49.56 38.09
MACLR 29.20 36.38 46.62 61.86 75.69 46.59 31.12 24.36
MACLR+IRENE 42.80 51.95 62.82 75.93 85.77 70.52 51.10 39.24
DPR 38.93 49.21 61.84 72.17 87.01 51.54 40.30 32.71
DPR+IRENE 44.88 54.95 66.71 80.17 89.10 70.39 52.50 40.91
TF-IDF 9.49 11.67 14.79 20.87 30.10 15.07 9.19 6.93
Zest-XML 32.24 38.01 45.15 54.31 59.32 60.16 39.33 29.21
SemSup-XC 23.44 28.83 38.08 48.01 61.30 54.20 40.72 29.58
DEXA 45.83 55.05 65.86 74.63 88.11 67.98 48.88 37.90
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Table 16: Ablation study on meta-classi"er generator G and classi"er selector S component in IRENE on LF-WikiHierarchy-
550K-10 dataset. Here IRENE is NGAME+IRENE

Method Zero shot Generalized

R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5 R@3 R@5 R@10 R@30 R@100 P@1 P@3 P@5

IRENE (D = 1, K = 3) 59.02 70.42 80.40 88.83 93.85 69.29 50.98 38.81 15.25 23.32 40.09 72.71 87.81 91.33 89.52 86.67

D = 2 59.83 70.83 80.39 88.60 93.79 70.36 51.66 39.06 15.35 23.49 40.48 73.51 88.35 92.13 90.10 87.24

D = 4 60.00 70.85 80.27 88.51 93.70 70.71 51.82 39.11 15.37 23.52 40.56 73.72 88.42 92.28 90.18 87.33

G as Sum 37.55 47.10 59.01 73.87 84.80 45.49 32.59 25.46 11.23 16.84 27.15 39.57 56.20 68.11 64.01 60.51

G as wt. Sum 38.34 47.72 59.29 74.33 85.12 46.39 33.23 25.88 11.29 16.80 27.28 40.25 57.74 66.60 63.08 59.72

IRENE + Enc. Embed. 49.10 60.60 72.36 82.31 87.66 56.79 42.14 32.92 14.25 21.49 35.89 53.75 73.33 87.17 83.12 79.29

K = 1 58.82 70.24 80.11 88.79 93.84 68.98 50.79 38.56 15.13 23.13 39.67 72.01 87.59 91.04 88.85 85.95

K = 2 59.18 70.33 80.25 88.94 93.94 69.34 51.01 38.74 15.23 23.27 39.97 72.41 87.74 91.15 89.30 86.40

K = 6 59.63 70.83 80.79 88.94 93.81 69.94 51.52 39.12 15.09 23.14 39.93 72.98 88.04 89.93 88.59 86.01

K = 20 58.67 69.81 79.80 88.06 93.30 69.07 50.78 38.57 15.23 23.27 39.93 72.75 87.92 91.76 89.61 86.64
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