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Abstract

Ranking a set of items based on their relevance to a given query is
a core problem in search and recommendation. Transformer-based
ranking models are the state-of-the-art approaches for such tasks,
but they score each query-item independently, ignoring the joint
context of other relevant items. This leads to sub-optimal ranking
accuracy and high computational costs. In response, we propose
Cross-encoders with Joint Efficient Modeling (CROSS-JEM), a novel
ranking approach that enables transformer-based models to jointly
score multiple items for a query, maximizing parameter utiliza-
tion. CROSS-JEM leverages (a) redundancies and token overlaps to
jointly score multiple items, that are typically short-text phrases
arising in search and recommendations, and (b) a novel training
objective that models ranking probabilities. CROSS-JEM achieves
state-of-the-art accuracy and over 4x lower ranking latency over
standard cross-encoders. Our contributions are threefold: (i) we
highlight the gap between the ranking application’s need for scor-
ing thousands of items per query and the limited capabilities of
current cross-encoders; (ii) we introduce CROSS-JEM for joint effi-
cient scoring of multiple items per query; and (iii) we demonstrate
state-of-the-art accuracy on standard public datasets and a pro-
prietary dataset. CROSS-JEM opens up new directions for design-
ing tailored early-attention-based ranking models that incorporate
strict production constraints such as item multiplicity and latency.
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1 Introduction

We consider the problem of ranking that arises in search and rec-
ommendation pipelines, wherein the goal is to rank a set of items
based on their relevance to a given query. Our work is in the con-
text of two-stage retrieve-then-rank pipelines in modern search
engines [8, 15, 16, 25, 43, 45] as depicted in Figure 1. Given a query,
i.e., a search phrase such as “patagonia japan”, the retrieval stage
pares the items, i.e., keywords such as “clothing store japan”, “patag-
onia homes shimoda” that are bid against for displaying ads, from
billions to a few hundreds [11, 23] of potential interest. These items
are subsequently provided as the input to the ranking stage. In this
work, we focus on the ranking model, given a black-box retriever.
We consider short-text items (as in the above example), which ap-
pear in a myriad of recommendation systems applications such as
product recommendation, query to advertiser bid phrase recom-
mendation, and Wikipedia category tagging [5, 35, 44]. In designing
the ranking model, two key axes are the model architecture, and
the choice of the loss function, while the key performance metrics
for such systems are accuracy and inference latency.

Ranking architectures and limitations: Along the architecture
vertical, encoders that employ stacked attention layers to encode a
query-item pair, followed by a classifier to predict ranking scores
are widely adopted for ranking [25, 27, 45]. Recently, sequence-
to-sequence models with encoder-decoder and decoder-only ar-
chitectures have also been proposed for ranking. These models
provide a ranking score based on particular vocabulary-token log-
its [26, 42, 46]. However, these approaches model ranking as a
pointwise task, providing ranking scores for a given query and item
pair. But ranking is inherently a list-based task that requires scoring
query-item pairs relative to one another, and not in isolation. In
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particular, the other items in the list to be ranked for a given query
provide crucial context for scoring. Pointwise models neglect the
list context, produce independent scores that may not reflect the
optimal ranking order, and are difficult to calibrate across items for
sorting to provide final rankings [32].

Table 1 illustrates this by juxtaposing the top-5 ranked items
obtained using our proposed approach (listwise modeling) and a
baseline pointwise ranking model [25]. We observe that relatively
more generic items such as “mexican cuisine”, although relevant
to the query “different foods of oaxaca mexico”, are ranked higher
in baseline predictions, owing to (a) their frequency in training
data, (b) token-level matching and other biases which are diffi-
cult to mitigate in pointwise modeling. On the other hand, our
proposed listwise approach evaluates all the items to be ranked
holistically, and subsequently ranks more specific (not just relevant)
items higher.

Furthermore, pointwise transformer based models [25, 46] are
computationally expensive and impractical for real-time ranking
systems that need to handle large-scale traffic requiring low latency
and high throughput. Therefore, many industrial systems resort
to using simpler sparse neural networks [3] or late-interaction
models [14, 18] for online ranking, sacrificing accuracy for latency.

Another line of research has been along the loss function, wherein
training with listwise loss functions [2, 9, 46] have shown accuracy
gains. These listwise losses optimize the models for a list of items
to be ranked, rather than for individual query-item pairs, and can
enhance the ranking performance without increasing the model
size or complexity. However, these model architectures still operate
at the query-item (pointwise) level, and produce independent scores
for each item in the list, without explicitly modeling the inter-item
dependencies or the query context. Recent works also incorporate
listwise modeling via pre-trained LLMs for ranking [29, 31, 38, 42].
These approaches typically work with pre-trained large-scale mod-
els, focus on specifying all ranking items in the prompt and employ-
ing prompt engineering methods to improve accuracy and minimize
LLM inference calls. Due to the huge parameter count (running
into a few billions), these models cannot be deployed in large-scale
online ranking systems. In this paper, we aim to bridge this gap
by proposing a ranking model that works at the list level,
explicitly models inter-item interactions, and achieves a su-
perior latency-accuracy tradeoff, making it deployable in
real-time scenarios.

The Proposed Approach: We propose an end-to-end joint ranking
approach that models the listwise ranking of the query and given
items, capturing both the query-item and the item-item interactions
and satisfying the strict latency requirements of industry-scale
recommendation systems. Our approach, entitled CROSS-JEM
(CROSS-Encoder with Joint Efficient Modeling), leverages the list
structure of the input in both the encoder and the classifier compo-
nents, as well as in the training objective. Specifically, our encoder
is a transformer-based architecture that processes a query and a list
of items to rank in a single pass, generating Tist-aware’ context vec-
tors for each input token. To achieve this, each item token attends
to all other items in the list, as well as to the query, allowing the
encoder to capture the joint relevance of all items. This is followed
by a classifier which is jointly trained with the encoder. While any
standard loss function (e.g., binary cross entropy) could be used
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to train a CROSS-JEM model, in this work, we propose a novel
variant of the listwise loss functions [2, 30], Ranking Probability
Loss (RPL); which can be interpreted as a divergence between the
predicted probabilities and the estimated ranking probabilities (as a
function of model logits and ground truth rankings) of items to be
ranked. The proposed listwise loss works much better in conjunc-
tion with our joint modeling than standard pointwise or listwise
losses [2, 4, 30]. To the best of our knowledge, we are the first to
propose a joint ranking approach that can effectively model listwise
ranking in both the model architecture and the training objective
with real-time latency constraints.

CROSS-JEM is able to support low latency applications (few ms)
by significantly reducing the computational costs of cross-attention
across query and the list of ranking items. This is achieved by
exploiting the presence of token duplicates in the retrieved set of
items for a given query. CROSS-JEM exploits this redundancy to
sidestep processing long sequences, thereby keeping the inference
latency small. Further, jointly obtaining the ranking scores for a
list of items avoids multiple calls to the expensive encoder (unlike
pointwise approaches) making CROSS-JEM significantly faster.

In summary, our key contribution is the introduction of a novel
joint ranking approach CROSS-JEM, that scores multiple items
per query in a single pass, exploiting token interaction across items
for better accuracy and token redundancies for better efficiency. We
demonstrate the effectiveness of CROSS-JEM on two public bench-
mark datasets for short-text re-ranking, wherein it outperforms the
best-performing baselines by at-least 3% in terms of MRR. When
applied to large-scale search-based recommendation, CROSS-JEM
demonstrated a 13% higher accuracy than state-of-the-art models,
while being over 6x faster than standard cross-encoders [25]. We
also deploy CROSS-JEM for real-time ranking on live traffic, where
it reduces the quick-back-rate by 1.8%, indicating improved rele-
vance of ads to users. Our work presents a general, scalable frame-
work for joint ranking of multiple items across various domains
and short-text tasks, accounting for ranking under task-specific
constraints such as item multiplicity and latency.

2 Background and Related Work

Ranking Architecture: State-of-the-art transformer based models
with stacked attention layers are typically encoder based, such as
monoBERT and Birch [1, 25]. These models encode query-passage
pairs with a bi-directional attention encoder and use a classifier to
obtain a ranking score. Alternatively, sequence-to-sequence mod-
els, such as monoT5 [26] leverage the pre-training knowledge of
generative models for ranking. These models generate a ranking
score from a specific vocabulary token in the decoder output. An-
other line of work explores decoder-only models, such as llama-
and GPT-based models and rely on their extensive pre-training
knowledge and parameter count for ranking [19, 42]. Despite their
advantages, decoder-only models fine-tuned on large ranking cor-
pora [42] do not outperform the fine-tuned encoder-based and
sequence-to-sequence models on short-text ranking tasks (cf. Sec-
tion 5). CROSS-JEM is the first joint-ranking approach that effec-
tively incorporates listwise ranking into the model architecture and
training objective while maintaining latency constraints.

Joint (Listwise) Ranking: Ranking inherently involves comparing
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Figure 1: The two-stage large-scale search and recommendation pipeline comprises: (i) candidate selection from billions of
items; (ii) re-ranking of retrieved items. CROSS-JEM works at stage (ii), to output the score for all N item in a single pass.

Table 1: A comparison of CROSS-JEM’s listwise modeling and a pointwise ranking model [25]: Relatively more generic (but
relevant) items are ranked higher in baseline predictions, owing to biases such as high frequency in the training data. Our
listwise model evaluates all the shortlisted items in a single forward pass, and ranks more specific (and relevant) items higher.

Query ‘

Top-5 ranked items in the Proposed Approach (CROSS-JEM)

Top-5 ranked items in the baseline Cross Encoder

different foods of

oaxaca mexico

recipes from oaxaca, mexico’, ‘6 things you’ll love about oaxaca’

‘the foods of oaxaca’, ‘oaxacan cuisine’, ‘exploring oaxacan food’, ‘authentic

‘culinary tales: the kinds of food mexicans eat’, ‘mexican christmas foods’, ‘mexican

cuisine’, ‘culture: food and eating customes in mexico’, ‘popular food in mexico’,

what is the bovine

growth hormone hormone and milk : what you need to know’, ‘what is rbst?’

‘recombinant bovine growth hormone’, ‘what is rbgh?’, ‘rbgh’, ‘bovine growth

‘growth hormone’, ‘human growth hormone’, ‘alternative names for growth hormone’,

‘human growth hormone and insulin are friends’, ‘growth hormone (somatotropin)’

a list of items; thus, recent works employ listwise loss functions
in encoder or encoder-decoder models to enhance ranking accu-
racy. Gao et al. [10] devised a listwise multi-class cross-entropy
loss to optimize ranking probabilities in encoder models. Zhuang
et al. [46] introduced a ranking-specific listwise cross-entropy loss
to improve performance of Seq2Seq models for ranking. They also
demonstrated that an expanded form of cross-entropy loss (poly-
1) achieved superior performance across various ranking metrics.
Although listwise losses improved ranking accuracy, the model
architectures of these rankers remain pointwise and do not fully
capture the ranking task. CROSS-JEM ranks multiple items per
query in one pass, capturing item-item interactions in the ranking
list to improve accuracy. It is optimized with Ranking Probability
Loss (RPL), a novel variant of the listwise ranking loss (as consid-
ered in ListNet [2]) aligned with the CROSS-JEM architecture, and
estimates the ranking probabilities using target relevance labels
and predicted model logits.

LLMs for Ranking: LLMs have emerged as a powerful tool for
ranking tasks; they can leverage pre-trained knowledge, large pa-
rameter count, and effective prompting to achieve superior per-
formance. Existing works have adopted two main approaches to
exploit LLMs for ranking: (a) Using LLMs directly as re-rankers by
designing novel prompting schemes [21, 29, 38] and sorting strate-
gies [31, 47]; the high-level idea is to encode the ranking items
and the query into a single input and generate a ranked list as
output, using a sliding window technique to handle long inputs;
(b) Using LLMs for learning more accurate smaller ranking mod-
els [20, 28, 38, 42] via standard distillation or via augmenting the
training data with synthetic samples generated by the LLM. These
works have demonstrated that LLMs can outperform small-scale
supervised methods [25, 26, 31] on various ranking benchmarks.
Deploying LLMs at scale for real-time serving scenarios is still
challenging due to their high computational costs and memory
requirements. But using LLMs to enhance smaller ranking models,

as in (b), is more practical and scalable — this can be applied to our
proposed CROSS-JEM as well.

Efficiency and Scaling: Another closely related area is the focus on
improving the efficiency and scaling of transformer based rankers
(and retrievers) using light-weight architectures. Approaches em-
ploying early-attention (such as monoBERT [25]) have shown high
ranking accuracies, but cannot support the low-latency require-
ments of online raking applications in industry-scale recommen-
dation systems. This can be attributed to the requirement of mak-
ing multiple calls to the expensive transformer-based encoder to
rank a list of items per query, which is infeasible in a few mil-
liseconds. Therefore, online production systems use a variation of
sparse neural networks, namely MEB [3], for ranking thousands of
items in real-time. Late-interaction models such as ColBERT [14],
Baleen [13] and TwinBERT [18] are also used for online ranking due
to their computational efficiency. These models reduce the compu-
tational costs by applying a late-interaction layer over query-item
embeddings. This comes at the price of accuracy, owing to the lack
of interactions between query and item tokens. They also incur
high storage overheads in online settings, as they need to store and
retrieve token-level embeddings. Another line of work that focuses
on efficient retrieval and ranking is based on dual-encoder architec-
tures, such as ANCE [41], DPR [12], and INSTRUCTOR [36]. These
methods use contrastive-style training to learn a query and item
encoder and metrics such as cosine similarity to rank query-item
pairs. They can be made highly efficient via a nearest neighbor
search [22, 37] over pre-computed embeddings, but lose out on
accuracy compared to cross-encoder based approaches [25, 34].

3 CROSS-encoder with Joint Efficient Modeling

We now present CROSS-JEM, our proposed approach to accurate
and low-latency ranking via efficient scoring of multiple items.
Before we describe CROSS-JEM in detail, we develop the notation
used in the subsequent sections of this manuscript.
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Notation: We denote queries by q and the corresponding set of N
candidate items retrieved for g by Ky = {k1, k2, ..., kn }. We denote
the dataset of queries and items used for training by Q;, and I;, re-
spectively, and that of the test datasets by Q;e and I;.. We drop the
subscripts when the meaning is clear from the context. The ground-
truth scores are given by y; € RV, [y;] j = yij denoting the score for
the item k; from set Kg,, associated with the query gq;. The queries
q and items k; are tokenized via 77(-) to obtain d-dimensional

representations (tokens), given by Tq = {ql, %z, .., qL‘I}, and

Tkj = {k}, k?, el kj 7 }, respectively, where q[, kj. e R4,
Research Problem: We seek to learn a ranking model that, given
a query g, assigns scores Sq = {s1,52,..., sy} for all items in Kg,
such that the ranking induced by the scores is accurate.

3.1 The CROSS-JEM Architecture

CROSS-JEM comprises an encoder to obtain representations of a
given query q and all its candidate items K. The representations
are pooled and passed to a classification head, that outputs a score
corresponding to each item k; € Kg associated with the query.

CROSS-JEM’s architecture is primarily inspired by the observa-
tion that the candidate items in the set Kg, for a given query g, has
significant token overlap amongst themselves. A more in-depth
exploration of this phenomenon, in the context of efficient-scoring,
is provided in Section 5.3. Given a query q and its candidate items
Kgq, the core idea is we form the union of tokens TUq of all items
in Kq. Subsequently, the representations of query and set Ty, can
be obtained in a single pass of the encoder, and scored via a single
pass over the classifiers.

While at first glance, it might appear that using Ty, (with a
potential loss of ordering of the item tokens) could adversely affect
performance, we observed in preliminary experimentation that this
is not the case when scoring short-text items. In particular, we
compared the performance of two cross-encoder models on search
engine logs, one with items as-is, and another comprising items
with alphabetically sorted tokens. Both the mean average precision
(MAP) and accuracy of the latter model was found to be within 1%
of the score obtained when the sequence information is retained.
Additional discussions are provided in Appendix F.

We now describe the CROSS-JEM encoder and classifier in detail.
Encoder: CROSS-JEM employs a trainable encoder Eg, which takes
as input a sequence of tokens T = [tl, .., t”] (of length n), and
generates as output another sequence of d-dimensional contextual
embeddings E¢(T) = E = [ej, ey, ..., e,]. These embeddings pro-
vide context-dependent representations of the input tokens, and
can be used for downstream tasks such as classification, generation,
and retrieval. Given the tokenization of the query (Tg), and that of
an item (T;), the contextual embeddings of the tokens

L.
[t[CLS],ql,qz,...,qu,t[SEP],k}-,k?,...,k]. 7]
in baseline variants is given by
Ly,
L. 1 2 J
[e[CLS'],eql,eqz,...,eq q,e[SEP],ekJ’,ekf,.,.,ekf 1,

where elLS] and e[SEP] denote the embeddings of the t[CLS] and

t[SEP] tokens, respectively. These contextual embeddings are pooled
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to obtain a single d-dimensional embedding for each pair (g, k) by
means of a sum or mean pooling layer, or by taking elCLS] This
process is computationally expensive due to the need for N forward
passes of the encoder to compute the scores for each item in Kg.
In CROSS-JEM, we leverage the short-text nature of the items,
item-item interactions, and redundancy of tokens amongst items
in Kg. This is done by computing the contextual embeddings for
all distinct tokens in the retrieved item set K4 in one pass over the
sequence of the query tokens Ty combined with item token union set

Ty, = {t“l,t"z, e
in the union set. The contextual embeddings of all input tokens in
CROSS-JEM are computed as

E=&p ([q1 . .,qL‘I,tlSEPJ,t'fI...,t"M])

1 L, ul uM
= [e[CLS],eq,...,eq 7 o[SEP] ot ot ]

}, where M is the total number of tokens

Since the number of tokens in the item union set is significantly
smaller than the sum of tokens of all items in Kg (cf. Section 5.3),
the proposed token-union-based inference enables highly efficient
computation of contextual embeddings. Figure 2 (a) illustrates the
difference between the CROSS-JEM encoder, and standard encoders
such as monoBERT.

Selective Pooling Layer: Given the contextual embeddings E for
all query tokens (Tq) and union over keyword tokens (T, ), CROSS-
JEM employs a selective pooling layer to jointly model the per-
item relevance score. Given k; € Kg4, a pooled representation for
pair (g, k) is computed as the mean of the contextual embeddings
for all tokens in Tq and those tokens in Ty, which are present
in Tk;. The set of selected tokens for the pooling layer is given

by Py, = Tq U {t[SEP]} U {TUq N Tkj} . The selectively pooled

representation egy; € R? is obtained via selective mean pooling:

. 1 j
edki = 3 et (1)
| qk,—| t/€Pgx;

Ablations on designing the pooling layer are provided in Section 5.
Classifier: The final stage in CROSS-JEM is a d-dimensional shared
linear classifier w € R? which computes the relevance score associ-
ated with each pair (g, k). The selectively pooled representations
e9%; obtained for all k j € Kgq are batched together (e9k e RN*d)
allowing for the computation of all logits [fg]; = (w, e9%i) in a
single shot. The scores are defined over these logits (cf. Section 4.1).

4 The CROSS-JEM Algorithm

For training CROSS-JEM, we jointly learn the encoder model and
classifier parameters {6,w} with target scores obtained from a
teacher model. The teacher is a large cross-encoder-based model
which is highly accurate but computationally expensive (cf. Sec-
tion 5). The encoder followed by the selective pooling layer output
representations associated with the query and each candidate item,
while the linear classifier generates logits for each query-item pair.
During inference, CROSS-JEM predicts the logits for a set of re-
trieved shortlist items jointly (for a given query), as in the training
phase. The SoftMax over the logits give the scores, and in turn, the
ranking. The inference algorithm is provided in Appendix B.
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and item tokens individually (pointwise). The inference is repeated N times for N items. (b) CROSS-JEM jointly inputs query
tokens and the set of union of tokens from all items to be ranked (listwise). The logits for an item k; can be computed by
selecting the contextual embeddings corresponding to its tokens. The selected embeddings are pooled, and input to the linear

classifier jointly (i.e, W = [w,w

The Ranking Probability Loss (RPL) used to train CROSS-JEM is
a novel variant of existing list-based loss functions, and is designed
to take advantage of CROSS-JEM architecture, wherein all item
scores are available jointly from a single forward pass.

4.1 The CROSS-JEM Ranking Probability Loss

The standard loss to train cross-encoders is the binary cross-entropy
loss, defined over (g;, k), given by LBCE(G,W) is

=]

trl

N
> |vitog fuugui) + (1= yij) log (1= fugui) | @

Jj=1

I
—_

i

where fu.q,;j = (w.Eg (i kj)) is the score of item j, associated
with query i, computed by means of an inner product with the
classifier w. However, such cross-entropy-based pointwise losses
fail to account for the list of items available for ranking. List-based
loss functions [2], in contrast, leverage the task-specific ranking
information, help learn a scoring function for a list of items to be
ranked, rather than for individual query-item pairs. As an example,

w] € R*N), thus obtaining the N scores in a single encoder and classifier pass.

consider the ListNet [2] loss £LN(6,w), given by:

LN ‘Qtrl N
LNOw) =~ > 1Py log (pf,j), 3)
i=1 j=1
q> .
where Py j = N([—x]])’ and x is set either to the targets [yqi ],
2oy @ ([x]e)

or the output logits | fg, |, and @ is a normalizing function, typically
the exponential operation, leading to P being a SoftMax function.
However, this formulation is still centered around obtaining the
pointwise logits, and subsequently computing the top-one proba-
bility Py, j using a normalization term that accounts for all pairs.
In CROSS-JEM, we design a novel version of the ListNet loss,
one that factors in the availability of all logits [ fqz] computed
by taking into account the item-item interactions. Given fg,, the
ground truth scores y;, and a candidate item k;, we define the set
L;j = {k € {LN}: [yilx < [yil;}, i.e, Lj comprises the indices k
for which the ground truth score at location k is lower than [y;];,
the ground truth score at location j. We now define the RPL as:

|Q:r| N

ZZ(Z

keL;

L RPL _

)log (SoftMax( Z [fq:] )) (4)
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The loss £RPL represents a cross-entropy loss over functions of
the target y; and scores computed as a function of the logits fg.
The following Lemma sheds light on the relationship between RPL
and the ranking probability distribution.

LEMMA 1. (Ranking Probability Loss) Assume without loss of
generality that fq, € [0, 11N, Let P € RNXN denote a matrix with
entries p i given by p;r = Prob (ranking item k; at location k) £
CXrer, [fqi]g, where C is a normalizing constant. Then, the Ranking
Probability Loss maximizes the probability of ranking items Kgq, in
the ordering of the ground-truth y;.

The detailed proof is given in Appendix A. The sketch of the
proof follows by evaluating the matrix P for the predicted logits
fq; defined above, and P* defined over the ground-truth scores
yij. Minimizing the distance between P and P* is equivalent to
minimizing the KL divergence between the predicted, and ground
truth ranking distributions, which yields the Ranking Probability
Loss defined in Equation (4).

The following Corollary presents an equivalence between the
ListNet loss [2] and the proposed Ranking Probability Loss.

CoRroLLARY 2. (RPL and the ListNet loss) Minimizing the Rank-
ing Probability Loss is equivalent to optimizing for the ListNet top-
1 probability loss (Equation (3) [2]) defined over modified scores
2ZkeL; [fq:]j and modified ground-truth scores ;; = ke, [yil;.

Intuitively, defining the modified scores in terms of the sum of all
logits in L j, the set of indices of ground-truth scores lower than the
logit at j, ensures that the loss takes into account the interactions
between the contextual embeddings contribution to the different
logits. This is unique to the CROSS-JEM setting, and Corollary 2
shows that all guarantees derived for ListNet loss also hold for RPL.

We show in Section 5 that CROSS-JEM trained with RPL yields
significantly better ranking accuracy than existing pointwise and
listwise loss functions, and leads to state-of-the-art performance
on public and proprietary ranking benchmarks.

5 Experimental Validation

Datasets: We evaluate CROSS-JEM on the publicly available on
Stack Overflow Duplicate Questions [17] (SODQ) and a short-
text version of MS MARCO [6] datasets. While the SODQ dataset
is used as is, for MS MARCO, a ‘short-text’ variant of the query-
webpage click dataset is constructed by exclusively considering
webpage titles (subsequently referred to as MS MARCO-Titles).
This narrows the dataset’s length distribution, aligning it more
closely with the typical item lengths seen in sponsored search. We
note that the standard metrics for MS MARCO passage ranking
do not apply to MS MARCO-Titles, as they rely on the passage
content as well as the title for ranking. Therefore, we report updated
numbers for MS MARCO-Titles in Table 2, as appropriate. See
Appendix C for more details on the datasets.

Evaluation Metrics: To validate the efficacy of CROSS-JEM for
ranking tasks, we consider Mean Average Precision (MAP) and
Mean Reciprocal Rank (MRR) as the evaluation metrics on both MS
MARCO and SODQ datasets (see Appendix D for metric definitions).
Note that MAP is a more comprehensive version of MRR, which is
specifically designed for scenarios where the test set contains only
one positive item per test query. Hence, on MS MARCO, where
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there is only one relevant item per query, MAP@K and MRR@K
are equivalent for any K.

Baselines: We compare CROSS-JEM with transformer based rank-
ing approaches as well as sparse BoW methods such as BM25.
Within transformer based ranking baselines, we consider state-of-
the-art encoder based methods such as monoBERT [25]. These ap-
proaches employ early interaction across query-item tokens (point-
wise) in the form of self-attention and are widely used for ranking.
We also compare CROSS-JEM against more efficient encoders such
as ColBERT [14]. Late-interaction Models like ColBERT apply self-
attention within query or item separately and combine the contex-
tual embeddings across query and item later via a computationally
cheap cross-interaction layer. We compare CROSS-JEM with a Col-
BERT model consisting of 12 layers (109M parameters). Dual En-
coders such as ANCE [41], DPR [12], and INSTRUCTOR [36] use
contrastive learning to train the encoder and obtain dense represen-
tations of queries and items. Typically, a dot product between the
query and item representations is used as a measure of relevance. IN-
STRUCTOR is a dual encoder approach, which obtains task-specific
embeddings using instruction prompts to the model. Following Su
et al. [36], we use pre-trained and instruction-tuned INSTRUCTOR
model for zero-shot evaluation on MS MARCO and SODQ. We
also compare against state-of-the-art sequence-to-sequence class
of models containing encoder-decoder architecture, RankT5 [46].
RankT5-base is a 24 layer model trained on MS MARCO passage
ranking task and is taken as it is for evaluating as a baseline here.
For a fair comparison with 6 layer CROSS-JEM model, we also fine-
tune our own RankT5 model with 6 layers (encoder+decoder) on
both MS MARCO-Titles and SODQ datasets. For completeness, we
also compare against a decoder only ranking model with Llama2-7B
architecture, referred to as RankingGPT-Llama2-7B, available
from Zhang et al. [42]. These models have been pre-trained as well
as fine-tuned specifically for ranking tasks with huge amount of
training data generated from larger and more accurate LLMs.
Hyper-parameters: CROSS-JEM’s tunable hyper-parameters in-
clude maximum item union length, L,, and number of items per
query, N. These hyper-parameter values are dictated by the ap-
plication requirements and efficiency constraints. We use N = 10
and L, = 360 on MS MARCO and N = 30 and L,, = 242 on SODQ.
Hyperparameters used for the baselines are given in Appendix E.

5.1 Accuracy Results on Public Benchmarks

Table 2 shows the results of CROSS-JEM and several competitive
baselines on the SODQ and MS MARCO datasets. We observe that
CROSS-JEM achieves superior performance over the encoder based
methods on both datasets, demonstrating the effectiveness of its list-
wise ranking approach. We also compare CROSS-JEM with encoder-
decoder based methods such as RankT5-6L, which encode queries
and generate item rankings using a decoder. Here, we note that
RankT5-6L, which is fine-tuned with a listwise ranking loss, out-
performs similar sized encoder based methods (monoBERT and
ColBERT), highlighting the benefits of listwise modeling for rank-
ing. However, we find that RankT5-base, a larger encoder-decoder
model (24 layers, 223M parameters) that is fine-tuned on a long-
text passage ranking task [46], performs worse than smaller models
that are specifically fine-tuned on short-text ranking. A similar
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Table 2: Performance of CROSS-JEM and the baseline methods on the SODQ and MS MARCO-Titles ranking datasets: All
baselines and our method, CROSS-JEM, use ~60-100M parameter base models and are fine-tuned on the corresponding datasets,
except for the large pre-trained models (indicated with asterisk (*)), which are used as is without any further fine-tuning on the
two datasets. CROSS-JEM surpasses similar-sized state-of-the-art methods fine-tuned for short-text ranking as well as large

pre-trained models by at least 3%.

Method

Parameters

SODQ MS MARCO-Titles

MAP@5 MAP@10 MRR@5 MRR@10

Sparse Models ‘ BM25 - 32.80 39.26 23.71 24.57

Early-interaction monoBERT 66M 46.79 48.04 30.89 32.47

Late-interaction ColBERT 109M 36.10 37.68 30.25 32.00

Encoder DPR 66M 47.32 48.48 28.78 30.87

Dual Encoders ANCE 66M 48.31 49.41 28.48 30.53

INSTRUCTOR* 335M 49.47 50.81 28.84 30.55

RankT5-6L 74M 49.50 50.75 30.73 32.52

Encoder-Decoder Seq2Seq RankT5-base* 223M 4566 4947 2787 29.75
RankingGPT-

Decoder Ranking LLMs aning: 7B 4764 5062 28.66 3047

Llama2-7B
Ours ‘ Joint Ranking CROSS-JEM-6L 66M 52.40 53.05 33.82 35.45

observation is made for RankingGPT-llama2-7b, a large decoder
only model (7B parameters) that is pre-trained and fine-tuned on
large-scale ranking datasets [42], but performs similarly to much
smaller models on short-text ranking. These results suggest that
the Seq2Seq models are sensitive to the domain and length of the
ranking tasks, and require careful fine-tuning and adaptation. To
verify this, we fine-tune a RankT5-base model on the short-text
ranking datasets and observe a significant improvement in perfor-
mance (cf. Appendix E). We also report that CROSS-JEM, which
uses a 6-layer BERT as the base encoder, has the same number of
parameters as monoBERT, but is much faster and more accurate.
Specifically, CROSS-JEM can perform joint (listwise) inference for
ranking over 4X faster than monoBERT, which requires multiple
pointwise computations (cf. Section 5.3). Moreover, CROSS-JEM
performs up to 5% more accurately than dual encoder methods
and up to 20% more accurately than sparse models like BM25. We
perform more experiments on the comparison of pointwise and
listwise loss functions in CROSS-JEM in Section 5.4.

5.2 Case Study on Sponsored Search Ads

In large-scale search and recommendation systems like sponsored
search, the ranking model serves to weeding out bad retrievals and
rank the prediction pool of different retrievers to select the top-k.
We evaluate the effectiveness of CROSS-JEM on this real-world
task of matching user queries to relevant advertiser-bid keywords.
A large scale dataset consisting of 1.8B query-keyword pairs was
created by mining search engine logs (detailed in Appendix C).

Accuracy comparison: As shown in Table 3 (details on base-
lines in Appendix F), CROSS-JEM improves over the in-production
sparse neural model MEB [3] in MAP by over 13%. Further, CROSS-
JEM also outperforms ANCE and TwinBERT by large margins in
MAP, Precision, and Recall. We also assess CROSS-JEM’s ability to
eliminate irrelevant items while preserving relevant ones. Table 3
presents the negative and overall accuracy when retaining top 80%

of positive items per query. CROSS-JEM achieves 99.45% negative
accuracy, removing nearly all irrelevant items.
Efficiency Gains: We observe that CROSS-JEM takes only 9.8 ms
to score 700 keywords for a query on a A100 GPU. In contrast,
monoBERT takes 41.3 ms for the same task, rendering it unsuitable
for online deployment. This represents a more than 4-fold reduc-
tion in latency compared to standard cross-encoder models. The
latency gains are because CROSS-JEM scores multiple items for a
query in one shot by passing their concatenated tokens through the
model. On the other hand, monoBERT scores each query-item pair
independently necessitating 700 passes compared to CROSS-JEM’s
7 passes. Additionally, CROSS-JEM provides 3x lower latency on
GPUs than MEB on CPUs. This highlights CROSS-JEM’s ability to
leverage GPU acceleration for efficiency, unlike sparse models.
CROSS-JEM achieves a high throughput of 17,200 query-keyword
pairs per second. This is over 5X more than the 3,350 pairs per sec-
ond for monoBERT. The massive throughput and latency gains
show CROSS-JEM’s ability to meet the computational demands of
large-scale industrial systems without sacrificing accuracy.
Online A/B testing: CROSS-JEM was deployed in the ranking stage
of a premier search engine to conduct A/B tests on live traffic. The
ranking stage receives an average of 700 keywords and up to 1400
keywords in the 99th percentile, from a suite of retrieval algorithms.
The control group consisted of a proprietary combination of late
interaction, dense retrieval, and sparse-neural-network algorithms.
CROSS-JEM demonstrated a decrease in the quick-back-rate (users
who close the ad quickly, indicating non-relevance) by over 1.8%.
Furthermore, as judged by expert judges, CROSS-JEM improved
the proportion of accurate predictions by 10.2%.

5.3 Interpreting CROSS-JEM’s Performance

To better understand the efficiency gains in CROSS-JEM, we ana-
lyze the effect of the significant token overlap amongst candidate
items in the set Kq for a given query q. We trained an ANCE [41]
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Table 3: Comparison of CROSS-JEM with production baselines on Sponsored Search Ads Dataset for ranking advertiser-bid
keywords for a user query. CROSS-JEM outperforms baseline methods (with a latency small enough to be deployed for real-time
ranking) by 13% in MAP. CROSS-JEM filters >90% irrelevant predictions at a threshold which retains 80% of good predictions.

Method MAP@100 P@50 R@50 AUC Negative Accuracy Overall Accuracy

ANCE 78.39 4194 94.02 89.834 86.19 85.55

TwinBERT 83.56 43.50 9536  92.10 90.60 88.58

MEB 84.38 4294  94.65 91.77 84.59 84.40

CROSS-JEM 97.48 45.76  99.07 99.41 99.45 95.27
Table 4: (a) Ablation on loss function in CROSS-JEM; (b) number of item tokens Ly = |Tg|, number of transformer lay-
Adding item token sequence information in CROSS-JEM via ers L, number of candidate items N, and item union compression
positional encodings in the pooling layer. LgxN

Method | BCE CE ListNet RPL

MRR @10‘31.46 32.03 30.27 3545

(a)
Method | Without Positional With Positional
Encodings Encodings
MRR@10 35.45 35.68
MRR@5 33.82 33.98
(b)

Table 5: A comparison of latency between CROSS-JEM and
various baselines. The mean latency for scoring 700 items
per query was computed on A100 GPUs for all models. We
observe that CROSS-JEM takes about 4x lower inference time
than standard cross-encoders (monoBERT).

Method ‘ ANCE ColBERT monoBERT RankT5-6L CROSS-JEM

Latency

(ms)] 4.0 4.5 41.3 41.3 9.8

dense retriever on the same train set as above. For a query q € Qe,
recall that Kq = {ki,kz,...,kn} are the top N (=100 in our exper-
iments) items retrieved using ANCE. Let Ti_ denote word-piece

J
tokens in k; with a max-length of L. Let Tyy denote the union of
all tokens of items k; € K;.. We compute the following statistics:

1 L
m (mean total tokens) = @ Z (Z'Tkjl)’ and (5)

qute Jj=1
) ®

N

Intuitively, m is the the sum of item token lengths on average,
while Ny, is the cardinaltity of the union set, averaged over the
queries g for which the candidate items K4 were obtained. We
hypothesize that, if the items k; have significant overlap, m > Ny,.
Statistically, the union size Ny, is found to be at least 5 smaller than
m, indicating high redundancy, and correlates with observations
on the sponsored search case study (cf. Table 8 (b) in Appendix).

To further analyze this effect, we characterize the time complex-
ity of CROSS-JEM in terms of number of query tokens Lq = |’]1"q|,

1
Ny, (mean size of the set Ty) = @ Z (
te
q

i'
J
€Q¢e

j=1

factor C (approximated as ). The time complexity for scor-

[Tug
ing all N items jointly is (Lgq + Lg N /C)?L. On the other hand, for
the standard cross-encoder, the corresponding time complexity is
(Lg + Lg)’LN. In practice, the inference time depends on factors
such as the implementation of the model, the hardware employed,
and optimizations used (such as quantization). For the sponsored
search setting considered in Section 5, assuming Lq ~ Ly, letting
N = 100, the maximum tokens in an item is 24 and maximum item
union length used is 220, we have C = (24 * 100)/220 ~ 11. Then,
the standard cross-encoder time complexity is 4OOL§L, while that of
CROSS-JEM is 101.8L‘2]L, which is 3.9% lower. These inference time
gains are also reflected in the latency comparison of CROSS-JEM
against pointwise approaches such as monoBERT (cf. Table 5).

5.4 Ablations

Loss Function: We demonstrate performance comparison of point-
wise and listwise loss functions with CROSS-JEM architecture in Ta-
ble 4. While listwise loss functions (Cross-Entropy and ListNet [2])
either perform similar to or slightly better than pointwise losses
(such as Binary Cross-Entropy), CROSS-JEM trained with RPL per-
forms much better than any pointwise or listwise loss.

Incorporating Token Sequence Order Information: CROSS-
JEM encodes the union of tokens from all ranking items, which
enables fast inference by reducing the input sequence length. How-
ever, this also discards the original token order information within
each item, treating them as bags of tokens. Though in our prelimi-
nary experiments, we observe that the loss of sequence information
in the encoder has a negligible impact on the accuracy particularly
in short-text ranking tasks (within 1%, refer Appendix F). How-
ever, token sequence information could be crucial in many ranking
scenarios, and could get completely ignored in CROSS-JEM. To ad-
dress this limitation, we propose an extension of CROSS-JEM that
leverages sinusoidal positional encodings [40] to inject the item
sequence information back into the model via the selective pooling
layer. The key idea is to preserve the original position indices of
the tokens for each item in the ranking list, remove them during
the encoding process, and then add them back to the corresponding
token context vectors after the CROSS-JEM encoder. The positional
encodings are computed based on the original position indices and
are summed with the token context vectors. The resulting vectors
are then pooled together for classification as described in Section 3.
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This simple yet effective technique improves the MRR@10 by 0.2%
on the MS MARCO dataset (cf. Table 4 (b)), without any additional
latency. This technique could also be useful for improving CROSS-
JEM performance on long texts, which we leave for future work.

6 Conclusion: Limitations and Future Work

We introduced CROSS-JEM, an accurate and efficient approach for
joint ranking of a set of short-text items for a given query based
on relevance. CROSS-JEM effectively addresses the two major chal-
lenge in existing ranking architectures — sub-optimal accuracy due
to pointwise inference, and significantly higher computational cost.
Our extensive evaluations on publicly available ranking bench-
marks as well as large-scale sponsored search datasets reveal that
CROSS-JEM significantly outperforms the baselines, establishing a
new state of the art. The scope of this work is primarily focused on
the ranking of short texts, a common requirement in both industrial
Sponsored Search applications and academic benchmarks, including
tasks like matching queries with webpage titles and ranking dupli-
cate questions. While the current work demonstrates significant
gains on such short-text ranking tasks, the proposed approach could
be adapted for long-text ranking by incorporating post-hoc posi-
tional encodings (cf. Section 5.4) and more sophisticated attention
mechanisms that account for longer document lengths. Exploring
these adaptations is an area for future research. CROSS-JEM opens
up new directions for designing accurate ranking architectures and
algorithms, accounting for application-specific constraints.

7 Ethical Considerations

Our data usage and service provision practices have received ap-
proval from our legal and ethical boards. Socially, our research
is significantly enhancing the efficiency and user experience for
millions of people searching for goods and services online. This
improvement is crucial in today’s context, as it enables contactless
and time-efficient purchasing and delivery. Additionally, our work
is boosting the revenue of numerous small and medium-sized busi-
nesses by expanding their market reach and lowering customer
acquisition costs.
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A Proofs of Lemma 1 and Corollary 2
To derive the proof, we recall both Lemma 1 and the Ranking Probability Loss:

RPL |Qtr‘ N
£ == Z Z Z [yilx |log| SoftMax Z gk ||
i=1 j=1\keL; kel;

where §ij = Zker,[fq;]j is the modified score associated with the query-item pair (g;, k). The following Lemma sheds light on the
relationship between RPL and ranking probability distribution.

LemMA. (Ranking Probability Loss) LetP € RVNXN denote a matrix with entriesp . givenbypji = Prob (ranking item k; at location k) £
C Xrery [fqile, where C is a normalizing constant. Then, the Ranking Probability Loss maximizes the probability of ranking queries Kq, in the
ordering of the ground-truth ranking y;.

ProOF. Given fy,, the ground-truth scores y;, and a candidate item kj, we define the set L; = {k € {1, N} : [yilx < [yi];}, ie, L;
comprises the indices k for which the ground truth score of [y;]; is larger than the ground truth score at location k. Additionally, without
loss of generality, we assume that fg, and y; are normalized to have entries that lie in [0, 1]. We have:

pjk = Prob (ranking item k; at location k) £ C Z [fq:1es
tely
Where C is an appropriately chosed constant, such that P is a matrix with entries summing to one. Further, in the context of ranking with
the logits/scores, we have:
pjk = Prob (ranking item k; at location k)
= Prob (logit of item k; > {logits of all items ki, such that k € L }).
Since the entire analysis is presented in the context of a each query g;, for convenience, we abuse notation, and denote [fg,]; = [f]; = fj-
Then, we have
pjk = Prob (logit of item k; > {logits of all items kj such that k € Ly })
= Prob (fj > {f; forall k € Ly })

= Prob (fj > Ircré%i{fk})

zProb(fj> Zﬁ), (7)
tely

where the last step is a consequence of the norm-bound || f||1 < || f]|co- First, we note that, given the condition in Equation (7), for all k ranked

higher than j, pjx = 0. Further, for all k ranked lower than j, it suffices to show that the probability p ;. is non-zero, for j = k. To verify this,

consider two probabilities p;;, and p;,, with k; ranked higher than k;. Let 1;;, denote the indicator of the event associated with p;, . We

have

pik, <Prob| fi > 7 fi [ 13, | Probtae,) = pu,
4 E]Lkz
To build intuition for the this, assume without loss of generality that f have been sorted in a non-increasing manner. Let j = 1 k; = 1 and
ko = 3. Then, it is clear to see that

Prob(ﬁ >f4+f5+,..‘fl >fz+f3+f4+f5+...)Prob(f1>f2+f3+...)
=Prob(fi>fa+fz+...).

Given P built as described above, and P* defined similarly over scores y, from the discussion above, we see that minimizing the distance
between P and P* is equivalent to minimizing the distance between the vectors p = Diag (P) and p* = Diag (P*). We observe that, when
normalized, the entries of p correspond to the probability of ranking item k; and rank j, given sorted vectors f and y. Then, the RPL is the
binary cross entropy loss defined between p and p*, and represents minimizing the KL-divergence between the predicted ranking probability
distribution f and the ground-truth ranking distribution ¢, up to a normalizing constant factor. This completes the proof of Lemma 1. O

Proof of Corollary 2: To link the Ranking Probability Loss to the ListNet loss [2], we recall that:

|er‘ N

LN == > > Pyjlog (Ps ),
io1 j=1
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 ([x];)
=N @ ([x]e)

valid probabilities distributions, we see the equivalence between the ListNet loss, and the proposed Ranking Probability Loss.

where Py j = Setting [Sq,]j = §ij = el [fq:1e, and [§:]; = §ij = SreL; [yi]r and a ® that result in mapping § and ¢ to be

B The CROSS-JEM Inference

The procedure for forward pass of a CROSS-JEM model during training as well as inference is outlined in Algorithm 2, while the procedure
to obtain the attention map over the item union set T is described in Algorithm 1.

Algorithm 1 Method to create attention masks for item k;. Input: Ty: Tokenized Query, Ty;: Tokens in item Union Set, k: tokenized k;
keyword. Output: AttMask: Attention Mask for the keyword

1: procedure GETKUATTENTIONMASK(Ty, Ty, k)
2 AttMask « []

3 for i from 0 to LEN(Ty) - 1 do
4 AttMask.ADpDITEM(1)

5 end for

6 for i from 0 to LEN(Tyy) - 1 do
7 if Tyy[i] in k then

8 AttMask.ADDITEM(1)

9 else
10: AttMask.ApDITEM(0)
1 end if
12: end for

13: return AttMask
14: end procedure

Algorithm 2 Getting relevance scores for a query and retrieved set of items using CROSS-JEM. Input: Query g, retrieved set of N items for
q where Kg = {ko, k1, ..., knr—1}. Output: Scores S = {s¢, $1, ..., SN—1}

: Tq < TokeNIZE(Q) > Tokenize the query
Ty « {}

: Kiokens < ] > Store tokenized items
: for k in K4 do

ktokens < TOKENIZE(k)

Ty « UN1oN(Ty, Ksokens)

Ktokens-ADDITEM(Kfofens)

: end for

. Ty < SorTED(Tyy)

. KUAttMask « [] > KUAttMask: item Union Attention Mask
: forifrom0to N —1do

AttMask « GETKUATTENTIONMASK(Ty, Ty, K¢ okens[i]) (cf. Algorithm 1)

KUAttMask.ApDITEM(AttMask)

=T B R LI NI S R RN

_ e e e
T I Y

14: end for
15: sepToken « TokENIZE([SEP]) > Token id for [SEP] token
16: enclnpToks < Tp > Tokens to be passed through the Encoder

—_
3

. encInpToks.ApDITEM(sepToken)

: for ty in Ty do

encInpToks.ADDITEM(ty)

. end for

: E « Encoper(encInpToks)

: S « SELECTIVEPOOLING(E, KUAttMask) >S5 e RNxd
: S « CLASSIFIER(S) >SeRN
: return S

DN NN DN = =
B O N = S v ®

C Datasets

MS MARCO: MS MARCO document re-ranking dataset contains queries and their clicked web pages consisting of webpage title, URL,
and passage. We create a $hort-textVersion of the dataset by considering only the titles of the webpages, making the length statistics of
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Table 6: Improvement in performance of a large Seq2Seq model, RankT5-base after fine-tuning on short-text ranking bench-
marks

Method | SODQ MS MARCO

| MAP@5 MAP@10 MRR@5 MRR@10

RankT5-base (pre-trained) | 45.66 49.47 27.87 29.75
RankT5-base (fine-tuned) 55.9 56.8 33.72 35.14

the dataset better aligned with the real-world applications of ranking in sponsored search. We experiment with HDCT [6] retriever based
training dataset consisting of 0.37M training queries and top 10 predictions from HDCT along with their ground truth click labels. We use
the dev set to report our metrics as this set has ground truth labels available for evaluation. We use ~3.7M training pairs available in MS
MARCO HDCT dataset sourced from [6] as described above for training CROSS-JEM and baselines using DistilBERT [33]. The target scores
for all training pairs are obtained from a monoBERT model trained on binary ground truth click data with BERT-Base [7] as the base encoder
for MS MARCO dataset.

SODQ: Stack Overflow Duplicate Questions dataset involves ranking questions on Stack Overflow as duplicates or not with the tags Java,
JavaScript and Python [17]. It is also one of the re-ranking datasets on the popular MTEB benchmark [24]. StackOverflowDupQuestions
on MTEB benchmark is the only shoft text re-ranking dataset with both training and evaluation data available, and is hence used in our
experiments. Similar to our experiments on MS MARCO dataset, the target scores for training CROSS-JEM as well as baselines are obtained
from a BERT [7] based monoBERT model trained on binary relevance of duplicate questions.

Sponsored Search Dataset: The training dataset for sponsored search query to advertiser matching task is created using a BERT-Large
based monoBERT model trained on manually labeled and good-click data as the teacher model. A query-item (advertiser bid keyword) pair
in the good click data is obtained when the user clicked on the ad corresponding to an advertiser keyword in response to their query, and
did not close the ad quickly indicating they found it relevant. This BERT-Large teacher model was used to score 100 predicted items each
for 18.6M queries on the search engine during a time period. This resulted in around 1.8B query-item pairs with scores in 0 to 1 range as
training data for CROSS-JEM and all baselines in Table 3.

D Metrics

e Mean Average Precision (MAP): This is a ranking metric defined as the mean of Average Precision (AP) over the positive and negative
detected classes:

1 U1 N
0l D (— D Pulk) - relu(k)) 8

u=1\" k=1
where |Q] is the total number of queries, Py (k) is the precision at cut-off k in the list, rel, (k) is an indicator function equaling 1 if the item

at rank k is a relevant document, otherwise zero.
e Mean Reciprocal Rank (MRR): Rank is defined as the position of the first relevant item in the ranked list. MRR is hence defined as

below:
||
8

|Q] = \rank;

e Accuracy: Positive, Negative, and Overall Accuracy denote the proportion of positive, negative, and overall instances, respectively, in the
test set that are accurately identified.

e Area Under the ROC Curve (AUC-ROC): The ROC curve is a plot of True Positive Rate (TPR) or sensitivity against False Positive Rate
(FPR) at different thresholds.

E Baselines and Hyperparameters

For baselines monoBERT, DPR, and ANCE, we tune the following hyperparameters based on the validation set accuracy: learning rate,
weight decay, number of epochs. ColBERT is trained and evaluated with default hyperparameters provided by the authors!. We use the
pre-trained checkpoint? and code-base® provided by the authors for INSTRUCTOR model, and test its zero-shot performance using the
instructions mentioned in the paper. CROSS-JEM is trained with exactly same setting as monoBERT: learning rate of 1e-4, linear learning
rate scheduler, and AdamW optimizer. Hyperparameters specific to CROSS-JEM (N and L,,) are provided in Table 7. The metrics for BM25
on SODQ are taken from [17], while they are computed following Trotman et al. [39] on MS MARCO.

Fine-tuning RankT5-base (24L) for Short-text Ranking: We fine-tune the model checkpoint available from Zhang et al. [42] on
short-text ranking benchmarks and note the performance improvements in Table 6.

!https://github.com/stanford-futuredata/ColBERT
Zhttps://huggingface.co/hkunlp/instructor-base
3https://github.com/xlang-ai/instructor-embedding
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Table 7: Hyperparameters used in CROSS-JEM.

Hyperparam ‘ SODQ ‘ MS MARCO ‘ Sponsored Search

N 30 10 100
Ly 265 360 262

Table 8: Sponsored search dataset statistics motivating CROSS-JEM architecture design. (a) Cross-encoder trained with ordered
tokens (Ecg) and alphabetically sorted tokens for all items (S’CE). The small performance delta (between rows) indicates that
sequence ordering is not critical for short-text. (b) The mean total tokens m in a retrieved item set Q;, and the mean size N, of

tokens in the union of Q;,. The ratio of m to N;, being ~ 5 indicates strong token overlap.

Algorithm | MAP@100 Max-length in word-piece (L)‘ m ‘ Nu

12 498.38 | 93.70
EcE 93.03
16 499.34 | 94.02
7’
SCE 92.76 32 501.52 | 94.60
(@) (b)

Table 9: Variation in accuracy on varying the number of items scored per query by CROSS-JEM. We observe only minor variation
in changing the number of items to be ranked at inference time. This observation is useful in real-world ranking which receive
item candidates from a set of retrieval algorithms and hence the number of items to be scored can vary with the query.

N | Negative Accuracy Overall Accuracy AUC

10 99.18 94.94 99.24
20 99.37 94.96 99.34
50 99.52 94.82 99.40
80 99.56 94.71 99.51
100 99.45 95.27 99.42

E.1 Compute

All baselines on MS MARCO and SODQ datasets including CROSS-JEM were trained on 8 V100 GPUs. Experiments on proprietary Sponsored
Search dataset were conducted on larger GPU cluster with 16 V100s.

F Experiments: Sponsored Search Dataset

We compare CROSS-JEM against methods that can be deployed for real-time ranking including ANCE, MEB, and TwinBERT. TwinBERT
is a lighter version of ColBERT. It applies an MLP layer to individual query and keyword embeddings, unlike ColBERT which considers
interactions along all token embeddings. This makes TwinBERT more efficient and practical for real-world systems due to lower storage
requirements. Table 3 shows the comparison of CROSS-JEM with baseline methods in production where CROSS-JEM outperforms existing
methods by large margins.

Ablation on Number of items per Query (N): From Table 9, we vary the number of items scored per query from 10 to 100. With
more items, the token overlap increases, providing CROSS-JEM more opportunity for joint modeling. Correspondingly, we observe gains in
negative accuracy and AUC as items per query increase.

Ablation on Encoder &y in CROSS-JEM: Table 10 shows that even with a smaller encoder, CROSS-JEM provides significant accuracy
gains over sparse models like MEB while having low latency.

Ablation on Sequence Information: We analyze the effect of the ordering/sequencing of the item text on classification accuracy using
a cross-encoder model; and a train dataset consists of about 100M query-item pairs (g, k), drawn from Q;, X I;,, mined from proprietary
search engine logs. Given (g, k), we compare two cross-encoder & models: 1) Ecg: Standard cross-encoder scoring the pairs (g, k), and 2)
&(p: Cross-encoder trained to score pairs (g, k”), where the item k' is obtained by sorting the tokens in k alphabetically.

The hypothesis is that, if the cross-encoders Ecg and S,CE have similar scoring accuracy, then the sequence ordering is relatively less
informative for this task. While testing &/, is evaluated on (g, k’) pairs k” is drawn from I, with its tokens sorted alphabetically. Table 8(a)
shows how the variants perform on a test set of 10M pairs. We observe that, when the sequence information in k is discarded, both the mean
average precision (MAP) and accuracy are within 1% of the case when the sequence information is retained.
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Table 10: Variation in accuracy with base encoder &g in CROSS-JEM.

Encoder

Negative Accuracy Overall Accuracy AUC Latency CPU

TinyBERT - 2 layer
DistilBERT - 6 layer

96.52
99.45

92.76
95.27

96.67
99.61

114.3
744.7

G Qualitative Analysis

Table 11: A comparison of the top-5 ranked items obtained using CROSS-JEM’s listwise modeling and a pointwise ranking
model [25]. Relatively more generic (but still relevant) items are ranked higher in baseline predictions, owing to their frequency
in training data, token-level matching and other biases, which are circumvented when using listwise architectures capable of
evaluating all the shortlisted items in a single forward pass, and rank the more relevant (and specific) items higher.

Query

Top-5 Ranked Item in the Proposed Approach (CROSS-JEM)

Top-5 Ranked Item in a Baseline Cross Encoder

different foods of oaxaca mexico

‘the foods of oaxaca’
‘oaxacan cuisine’
‘exploring oaxacan food’
‘authentic recipes from oaxaca, mexico’

‘6 things you'll love about oaxaca’

‘culinary tales: the kinds of food mexicans eat’
‘mexican christmas foods’
‘mexican cuisine’
‘culture: food and eating customes in mexico’

‘popular food in mexico’

what is the bovine growth hormone

‘recombinant bovine growth hormone’
‘what is rbgh?’
‘rbgh’
‘bovine growth hormone and milk : what you need to know’

‘what is rbst?’

‘growth hormone’
‘human growth hormone’
‘alternative names for growth hormone’
‘human growth hormone and insulin are friends’

‘growth hormone (somatotropin)’

what is the state nickname of new mexico

‘what are the nicknames of the state of new mexico?”
‘state nicknames new mexico - south carolina and their explanation’
‘what is new mexico’s nickname?’
‘new mexico state names (etymology of names)’

‘the state of new mexico’

meh‘the state of new mexico’
meh‘state of new mexico’
‘new mexico’
‘new mexico state university’

‘state of mexico’

is the elliptical bad for your knees

‘does an elliptical make bad knees worse?’

‘are the elliptical machines bad for your knees?’

‘is an elliptical the best machine for knees that are chronically painful?’

‘why does my knee hurt on an elliptical machine?’

‘elliptical machine is good for osteoarthritis of the knee!”

‘what exercises can help relieve knee pain?’
‘4 bad exercises for bad knees’
‘how to treat a knee sprain’
‘how to strengthen legs with bad knees’
‘yoga bad for your knees, indian doctor warns’

what do you use for oxygen facial machines

‘oxygen facials and other skincare services’
‘oxygenating facial treatment’
‘oxygen facial : home kits, beauty benefits, side effects, process’
‘benefits of oxygen facial’

‘4 beauty - boosting benefits of oxygen facials’

‘using oxygen safely’
‘the oxygen machine’
‘shop cpap and oxygen’
‘oxygen concentrators and generators’

‘oxygen concentrators & generators’
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